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ABSTRACT
Serverless computing commonly adopts strong isolation mecha-
nisms for deploying functions, which may bring significant per-
formance overhead because each function needs to run in a com-
pletely new environment (i.e., the “one-to-one” model). To acceler-
ate the function computation, prior work has proposed using sand-
box sharing to reduce the overhead, i.e., the “many-to-one” model.
Nonetheless, either process-based true parallelism or thread-based
pseudo-parallelism still causes high latency, preventing its adapta-
tion for latency-sensitive web services.

To achieve optimal performance and resource efficiency for server-
less workflow, we argue an “m-to-n” deployment model that ma-
nipulates multiple granularities of computing abstractions such as
processes, threads, and sandboxes to amortize overhead. We pro-
pose wrap, a new deployment abstraction that balances the trade-
offs between interaction overhead, startup overhead and function
execution. We further design Chiron, a wrap-based deployment
manager that can automatically perform the orchestration of mul-
tiple computing abstractions based on performance prioritization.
Our comprehensive evaluation indicates that Chiron outperforms
state-of-the-art systems by 1.3×-21.8× on system throughput.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Serverless Workflows, Deployment Model, Graph Partition
ACM Reference Format:
Yiming Li, Laiping Zhao, Yanan Yang, and Wenyu Qu. 2023. Rethinking
Deployment for Serverless Functions: A Performance-first Perspective. In

∗Corresponding author: laiping@tju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11…$15.00
https://doi.org/10.1145/3581784.3613211

The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’23), November 12–17, 2023, Denver, CO, USA.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3581784.3613211

1 INTRODUCTION
Serverless computing has gained popularity as a means of develop-
ing intricate, parallel applications by interconnecting fine-grained
functions into workflows [4, 32, 37, 64]. Typically, these workflows
consist of data dependencies and parallel branches and can be struc-
tured as directed acyclic graphs (DAG).The orchestration of server-
less workflows has been facilitated by both commercial clouds (e.g.,
AWS Step Functions (ASF) [54], Microsoft Durable Functions [39],
and Alibaba Serverless Workflow [5]), as well as open-source sys-
tems (e.g., OpenWhisk Composers [20] and FissionWorkflows [47]).

During the deployment phase of a workflow, it is customary to
deploy functions within isolated sandboxes, following the “one-to-
one model” in Figure 1. Upon receiving a request, the platform re-
trieves the relevant image and initiates a sandbox (e.g., microVM [55]
or container) to execute the designated entry function. Subsequent
functions along the call path are further instantiated one after an-
other, eachwithin a distinct sandbox.The “one-to-one”model, while
offering an intricate scaling capability that promotes cost and re-
source efficiency, negatively impacts the end-to-end performance
of serverlessworkflows. First, the initialization of a sandbox, which
can range from hundreds of milliseconds to several seconds, can
dominate the overall latency of serverless workflows [9, 22, 42, 50],
e.g., starting a Hello-world Python container takes 167 ms [63].
Second, the intermediate data transfer incurs significant cost ow-
ing to the stateless formulation of functions [27, 32, 37]. This of-
ten necessitates a reliance on third-party storage services such as
Amazon S3 [53] for intermediate data transfer. While the over-
head generated by the cold startup of the sandbox can be circum-
vented through pre-warming or mitigated through startup acceler-
ation [9, 61], intermediate data transfer can still constitute up to
95% of end-to-end latency [30]. In addition, memory redundancy
due to duplicated runtimes and libraries across sandboxes can lead
to excessive memory consumption [11, 31], further constraining
the maximum number of instances on a machine.

Despite the strong isolation provided by the “one-to-one” model,
it severely constrains the serverless transformation of latency sen-
sitive applications. For instance, interactiveweb services like social
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Figure 1: Schematic overview of deployment model in
serverless workflow.

networks and web search typically require < 100 milliseconds la-
tency targets [23, 27, 59, 60], which is far less than the > 1 seconds
overhead resulting from cold start and interaction [9, 27, 32, 42, 63].
Although the “isolation-first” deployment mechanism is critical in
the public cloud, there exist scenarios that isolation is not that impor-
tant, e.g., private cloud, development and testing environments, and
non-sensitive workloads. Even in the public cloud, it is possible to
enhance the performance while reducing isolation level between
functions of the same tenant.

Prior studies [1, 4, 12, 30, 37] have explored the “many-to-one”
deployment model (Figure 1), which expands the deployment gran-
ularity by reusing a single sandbox between functions within a
workflow. This model is advantageous as it mitigates excessive
overheads in repeatedly initializing sandboxes and language run-
times, and enables direct communication through shared memory
for reducing intermediate data transfer costs. Despite these bene-
fits, our analysis indicates that the “many-to-one” model is still far
from optimal due to the high startup overhead of processes coded
in some popular programming languages. For example, the startup
time of a Python process can be 10× greater than the execution
time of some short-running functions (Figure 5). For parallel func-
tions in a workflow that are forked one after another in a sequence
(instead of at the same time), the startup time of a process, includ-
ing waiting and fork syscall, may exceed the sum of the cold start
time and the interaction time in the “one-to-one” model.

In this paper, we advocate for an “m-to-n” deployment model
(Figure 1) that prioritizes performance, deploying𝑚 functions into
𝑛 sandboxes for execution, where𝑚 is greater than or equal to 𝑛.
Specifically, we partition a serverless workflow into 𝑛 parts and
deploy each of them into separate sandboxes. This model enables
optimal end-to-end performance by grouping functions with min-
imal startup overhead and data transfer overhead together. Hence,
we introducewrap, a novel abstraction for guiding deployments. A
wrap consists of a subset of functions within aworkflow and serves
as the fundamental unit for allocating a sandbox. The functions of
a workflow may be partitioned into multiple wraps.

However, finding the optimal deployment granularities ofwraps
poses a significant challenge. The determination of which func-
tions should be grouped within the same wrap, and the manage-
ment of functions within the wrap, require careful consideration.
Wrap may execute a function by either cloning a thread from an
existing process or forking a new process. While thread reduces
startup latency by 96% compared to process (Figure 5), concurrent

execution of multiple threads is disallowed in the popular runtimes
of serverless such as Python and Node.js [3, 14, 15], resulting in
sub-optimal execution performance (e.g., 2× latency in Figure 6).
Thus, identifying the functions partitioning and execution mode
for each function, that can ensure optimal performance and re-
source efficiency based on workload heterogeneity in a serverless
workflow, remains an immensely challenging task.

To overcome these challenges, we design Chiron, a system that
leverages wrap abstraction with combined processes and threads.
It can achieve 19.5× and 7.6× higher throughput on average than
the “one-to-one” model and “many-to-one” model, respectively. To
efficiently explore optimal wraps for serverless workflows, we de-
sign PGP, a prediction-based graph partitioning algorithm for de-
termining function sets within each wrap and execution mode for
each function. PGP provides an accurate end-to-end latency predic-
tor, as well as a heuristic algorithm that addresses two fundamental
optimization related to performance and resource efficiency.
Contributions. We highlight the contributions as follows:
• Problem: An analysis of trade-off between performance and

overhead in existing deployment models, and an investiga-
tion of weakness in their design.
• Wrap: A novel abstraction for the “m-to-n” deploymentmodel,

aimed at optimizing performance and resource efficiency by
function partition and function execution mode selection.
• PGP: A prediction-based graph partitioning algorithm for

exploring the optimal deployment granularity of wrap.
• Chiron: A deployment system that implements wrap and
PGP atop OpenFaaS with combined processes and threads,
is developed.
• Evaluation: Experimental results on various serverlesswork-

flows demonstrate the performance and resource efficiency
of the “m-to-n” deployment model and system.

2 BACKGROUND & MOTIVATION
In this section, we highlight the inefficiency of existing deploy-
ment models in serverless workflows and motivate the new ab-
straction.

2.1 Serverless Workflow & Deployment Model
Serverless computing enables the “composable development capa-
bility” for cloud applications. Applications can be built using func-
tions as a service (FaaS) and these functions can be combined to
form larger workflows. A workflow comprises a sequence of ex-
ecution stages, wherein each stage exhibits either a sequential or
parallel pattern.
Deployment Model. The “one-to-one” deployment model, spawn-
ing individual sandboxes to execute each function in isolation, is
the dominant paradigm in current platforms [5, 20, 39, 47, 54]. How-
ever, it suffers from sub-optimal performance efficiency due to the
cascading startup overhead of sandboxes and interaction overhead
between functions through network [8, 30, 32, 37, 38]. In contrast,
the “many-to-one” deployment model executes all functions of a
workflow within a shared sandbox [1, 4, 12, 30, 37]. Due to the
recycling of runtime and efficient communication between parent
and child processes, the “many-to-one” model can significantly re-
duce end-to-end latency compared to the “one-to-one” model.
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Figure 2: An example of GIL in Python.

However, even under the “many-to-one” model, the pseudo par-
allelism execution of code inherent in some interpreted languages
makes it difficult for parallel stages in workflows to take full advan-
tage of multi-core processors [14, 15, 30].
Pseudo-parallelism inPython:To ensure thread safety, CPython
[16] employs a global interpreter lock (GIL) [3, 15] to prevent mul-
tiple threads from using CPUs concurrently. Figure 2 presents an
example of how GIL is switched. Only the thread holding the GIL
is permitted to execute its bytecodes, and it is asked to drop the GIL
when others have been suspended for a specific timeout. Moreover,
the thread actively drops the GIL during I/O operations to prevent
potential long blocking. Therefore, multiple processes have to be
used to execute parallel tasks due to the exclusive GIL in each pro-
cess. Although there have been studies attempting to remove the
GIL, they are either incompatible with CPython extensions [13, 17]
or slow down the single-threaded performance [19, 24, 48].
Pseudo-parallelism inNode.js:Node.js executes JavaScript code
in a single execution thread, which handles asynchronous I/O in
parallel but suspends other tasks when CPU operations occurs, re-
sulting in similar pseudo-parallelism problem as that in CPython.
To remedy this, the worker threads [14] module was introduced to
enable multiple threads in Node.js for parallel task execution. How-
ever, our evaluation in AWS Lambda reveals that worker threads
incur more than 50 ms of startup overhead for each function, lead-
ing to doubled latency due to the median 60 ms latency of server-
less functions [50].

2.2 Observations
In this section, we study the performance of existing “one-to-one”
model and “many-to-one” model-based serverless workflow sys-
tems and find that the current deployment models are ill-suited
for the serverless workflow.

We evaluate the performance of both commercial and open-source
systems as below,

• Amazon Step Functions (ASF) [54]: The most popular orches-
tration service for serverlessworkflows in commercial clouds
and adopts the “one-to-one” model.
• OpenFaaS [36]: A popular open-source platform that also

adopts the “one-to-one” model (Table 2).
• Faastlane [30]: The state-of-the-art method of the “many-to-
one” model, which uses processes for executing concurrent
functions and threads for sequential functions.
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• Faastlane-T : Using threads only for both concurrent and se-
quential execution. It is designed for evaluating the perfor-
mance under thread-only configurations.
• Faastlane+: Running 5 function processes fixedly in each

sandbox, following the “m-to-n” model. It is designed for
evaluating the performance under process-only configura-
tions.

We use the Financial Industry Regulatory Authority (FINRA) ap-
plication [2, 30] as the benchmark, with 5, 25 and 50 concurrent
functions in the parallel pattern for validating trades for pre-determined
rules. To ensure a fair comparison, we configure the respective
Lambda functions such that their execution time matches those
in our local cluster.
Observation 1: The “one-to-one” model is characterized by signifi-
cant scheduling and interaction overhead.

We evaluate the performance of FINRA in ASF and OpenFaaS,
and find the scheduling overhead can dominate the overall latency.
As shown in Figure 3, ASF uses 150ms for scheduling a function,
and it only able to run up-to 10 functions concurrently. Then, the
scheduling overhead continues increasing, accounting up-to 95%
of overall latency in 50 parallel functions. Although our local or-
chestrator in OpenFaaS experiences significantly less overhead for
scheduling a function, the ratio for scheduling 50 functions can
still achieve 59% of the end-to-end latency.

We further evaluate the latency of data exchange between func-
tions across various sizes using third-party storage services (e.g.,
S3 [53] and MinIO [40]). Our results, shown in Figure 4, demon-
strate that even the smallest data transfer can take up to 52ms due
to multiple data copies and limited bandwidth in AWS Lambda [4,
46]. For 1GB data, the overhead can reach up-to 25s, significantly
longer than the millisecond-scale functions. Despite the efficient
network performance in local cluster, the interaction overhead still
range from 10 ms to 10s, making it challenging to meet the latency
SLO of latency-sensitive applications.
Observation 2:The “many-to-one” model entails a significant block
and startup overhead during function execution.

The “many-to-one” model deploys multiple functions within one
sandbox [1, 4, 30, 37, 56]. The functions can be implemented by ei-
ther processes or threads. Although threads cloned from existing
process are more efficient in terms of creation, context switching
and communication due to resource share of process, they suffer
the pseudo-parallelism problem in most serverless runtimes. In
contrast, multiple processes fork individual execution context for
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each parallel task to achieve true parallelism, and dominate cur-
rent “many-to-one” model.

We execute FINRA-5 under Faastlane to asses performance of
processes based “many-to-one” model, and illustrate the execution
timeline in Figure 5 (top).The interaction between functions through
inter-process communication takes only 4.3ms, reducing latency
by 71% compared to the “one-to-one” model. While the startup time,
which refers to the time taken from forking current process to the
beginning of function execution, is much shorter than the time re-
quired to spawn a sandbox, the average startup time (i.e., 7.5 ms)
can be 10× higher than the execution time of sub-millisecond scale
functions (e.g., Ë-Î). Moreover, subsequent processes need to wait
for the completion of forking all previous processes. Therefore, the
block time (e.g., Ì-Î), which refers to the waiting time involved
when forking multiple processes sequentially, is 1×-2.1× longer
than the startup time. For example, when 50 parallel functions ex-
ecute simultaneously, the blocking time can reach up to 169 ms,
similar to cold start overhead [63]. Thus, the “many-to-one” model
built upon multiple processes is still far from optimal performance
efficiency.
Observation 3: The combined processes and threads can further en-
hance the performance efficiency of the “m-to-n” model.

To explore the optimal deployment model, we evaluate various
methods that handle parallel patterns with different deployment
models and execution modes (i.e., process or thread). And the over-
all latency is shown in Figure 6. Despite attempting to amortize
block and startup overhead over multiple sandboxes, the perfor-
mance improvement of Faastlane+ over Faastlane is only 6.5% for
FINRA-50. This can be attributed to the continued heavy overhead
of multiple processes within a sandbox, as well as the additional
interaction overhead between sandboxes.

Although the pseudo-parallelism in multiple threads even leads
to 77% slower than OpenFaaS when executing 50 parallel func-
tions, we observe that Faastlane-T outperforms others by 17.4%
in FINRA-5. We further show the execution timeline of Faastlane-
T under FINRA-5 in Figure 5 (bottom), and find the profits of lit-
tle startup time outweigh the additional execution latency due to
pseudo-parallelism. Besides, block operations (e.g., sleep, IO) can
also execute concurrently with the thread holding GIL as shown
in Figure 2. Thus, neither true nor pseudo-parallelism can prevail
under all scenarios, motivating a combined approach. To this end,
Chiron, which employs the “m-to-n” model combining processes
and threads, achieves optimal performance in all cases, leading to
15.9%-74.1% reduction in latency compared to others.
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Observation 4: The uniform allocation mechanism in existing de-
ployment model can lead to poor resource efficiency.

We further measure the overall memory and CPU consumption
of FINRA under various models, and present the findings in Fig-
ure 8. It is observed OpenFaaS, i.e., the “one-to-one” model utilizes
the most resources due to uniform allocation for every function
in the workflow. Faastlane employs the “many-to-one” model and
recycles resources between functions, resulting in an average re-
duction of 85.5% and 7.5% in memory and CPU cost, respectively,
compared to OpenFaaS. The significant reduction in memory is at-
tributed to the severe memory redundancy between sandboxes for
language runtime and libraries [41], e.g., 77.2% in FINRA. However,
the “many-to-one” model allocates separate CPU resource for each
parallel function to achieve true parallelism, limiting the improve-
ment of resource efficiency. Chiron, employing the non-uniform
resource allocation for combined true and pseudo-parallelism, fur-
ther reduces 82.7% CPU and 8.3% memory cost compared to Faast-
lane.

There exist “many-to-one” model that built on true parallelism.
For example, FAASM [56] and Photons [11]. In this case, deploy-
ing all functions with threads can achieve the optimal performance.
However, uniform resource provisioning for parallel functions also
lead to sub-optimal resource efficiency. We evaluate the perfor-
mance of parallel functions under Python’s ProcessPoolExecutor [18]
and Java threads, which both support true parallelism. ProcessPoolEx-
ecutor uses a process pool to avoid significant startup overhead of
forking new processes for function execution. Four parallel func-
tions with various execution behaviors but similar latency are se-
lected from SLApp [33] for evaluation, including factorial,fibonacci,
disk-io and network-io. We measure the latency distribution with
various numbers of CPUs and show the results in Figure 7. The re-
sults indicate that the latencywith fewer CPUs (e.g., 3), namely, the
combined true and pseudo-parallelism only results in an average
increases of 11.7% (or 4.2 ms) in latency compared to the latency
with 4 CPUs, i.e., the uniform resource allocation.

2.3 Implications
Our motivational example demonstrates that even in the absence
of cold starts, the “one-to-one” model still suffers from poor perfor-
mance efficiency due to the scheduling and interaction overhead
(Observation 1). While the “many-to-one” model reduces these
overheads through deploying all functionswithin a sandbox, it also
introduces significant block and startup overheads for functions es-
pecially developed using interpreted languages (Observation 2).
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As interpreted languages dominate current serverless applica-
tions (e.g., 58% are developed using Python and 31% are developed
using Node.js [49, 50]), it becomes particularly critical and nec-
essary to rethink the deployment model for serverless functions.
Hence, we argue the “m-to-n” model, which can enhance both per-
formance (Observation 3) and resource efficiency (Observation
4) through function partition and the combined usage of processes
and threads.

3 DESIGN
In this section, we present the design of Chiron, which explores
the optimal wrap to implement the “m-to-n” model for serverless
workflow.

3.1 Overview
The basic idea of the Chiron is that both resource efficiency and over-
all performance of serverless workflow can be optimized through the
scheduling of the function partitions (i.e., wrap) and hybrid process-
thread executionmode.Wrap amortizes the possible excessive startup
overhead of parallel processes over multiple sandboxes. Moreover,
it mitigates the startup bottleneck of process by introducing thread
execution, thereby achieving a balance between startup overhead
and execution performance.

Chiron
Profiler
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Figure 9: The design overview of Chiron.
Figure 9 illustrates the design overview of Chiron, which lever-

ages the unique characteristics of workflows, such as startup over-
head, interaction overhead and functions execution behavior, to
achieve the optimal wrap design. This includes determining which

functions should be grouped together in each wrap and the execu-
tion mode for each function within the wrap. Specifically, after the
submission of the workflow definition (e.g., DAG, state machine)
and latency requirement Ê by the user, the Profiler module collects
the execution behavior of each function, and extracts CPU and IO
periods during function execution to facilitate performance predic-
tionË.Then, the PGP algorithmutilizes the Predictor to explore the
optimalwrap design Ì, maximizing resource efficiency while guar-
anteeing the end-to-end latency SLO. Chiron subsequently gener-
ates the orchestrator code for each wrap to manage function exe-
cution and state transfer Í. The orchestrator is bundled with the
wrap’s functions and deployed as a “new function”, and the server-
less platform spawns a separate sandbox for each wrapÎ. Finally,
the workflow invocation is directed to the firstwrapwhich invokes
subsequent wraps to collaboratively handle the request Ï.

3.2 Profiler
Motivated by the GIL switching mechanism shown in Figure 2, the
switching process can be simulated based on the CPU and block pe-
riods (i.e., duration for IO operations) in function execution. Spe-
cially, Chiron utilizes the strace syscall to extract the block peri-
ods from block syscalls invoked during function execution, such
as open, read, write, poll, select, sendto, and others. And the others
can be considered CPU time.

Figure 10 shows an example of function execution behaviors ex-
traction utilizing strace. The handle function calls several syscalls,
including select, write and read, and strace records the start times-
tamp, name and duration of each syscall. We can then deduce CPU
and block periods based on the function execution start timestamp.
To mitigate the estimation error introduced by the profiling over-
head of strace, Profiler scales down all block periods based on the
average function latency recorded without strace.

1 # function start timestamp: 0 ms
2 def handle(req): # strace log
3 ... # syscall start timestamp, syscall, duration
4 time.sleep(1) # 48 ms, select(), 1001 ms
5 path = "test.txt"
6 ...
7 with open(path, "w") as f:
8 f.write("1") # 1070 ms, write(</home/app/test.txt>), 0.042 ms
9 ...

10 with open(path, "r") as f:
11 f.read() # 1081 ms, read(</home/app/test.txt>), 0.025 ms
12 ...
13 # block period 1: (48 ms, 48 + 1001 ms)
14 # block period 2: (1070 ms, 1070 + 0.042 ms)
15 # block period 3: (1081 ms, 1081 + 0.025 ms)

Figure 10: Example of extracting block periods using strace
In summary, Profiler collects the function latency, start and end

timestamp of each block syscall in solo-run case for each function.
These data are then utilized for predicting the overall latency of
multiple threads within a process as shown in Algorithm 1.

3.3 Predictor
Designing an adaptive and dynamic performance predictor using
traditionalmachine learning (ML) or deep learning (DL) algorithms
requires considerable expert knowledge in concepts such as fea-
ture engineering and graph embedding of various workflows. Ad-
ditionally, a substantial number of training samples are typically
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required to achieve high accuracy, which leads to severe profiling
costs. To circumvent these issues, we utilize a white box method.

Serverless workflows comprise a sequence of execution stages,
wherein each stage includes one or more parallel functions. The
end-to-end latency of workflow can be estimated by summing the
execution time of all stages, as follows,

𝑇𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤 =
𝑛∑
𝑖=1

𝑇 𝑖𝑠𝑡𝑎𝑔𝑒 (1)

The execution time of stage 𝑖 is decided by the slowest wrap,
while other wraps are invoked by wrap1 through the network com-
munication.
𝑇 𝑖𝑠𝑡𝑎𝑔𝑒 = max (𝑇 𝑖,1𝑤𝑟𝑎𝑝 ,max

𝑘>1
(𝑇 𝑖,𝑘𝑤𝑟𝑎𝑝 + (𝑘 − 1) ×𝑇𝐼𝑁𝑉 ) +𝑇𝑅𝑃𝐶 ) (2)

where𝑇 𝑖,𝑘𝑤𝑟𝑎𝑝 denotes the latency of the𝑘𝑡ℎwrap in stage 𝑖 ,𝑇𝐼𝑁𝑉 de-
notes the overhead of multiple invocation resulting from platform
and programming library, and 𝑇𝑅𝑃𝐶 denotes the network commu-
nication overhead for one invocation.

The latency of each wrap consists of both computation time and
interaction time between processes,

𝑇 𝑖,𝑘𝑤𝑟𝑎𝑝 = max
𝑗∈𝑃𝑖,𝑘𝑤𝑟𝑎𝑝

𝑇
𝑖,𝑘, 𝑗
𝑃 +𝑇𝐼𝑃𝐶 × (|𝑃𝑖,𝑘𝑤𝑟𝑎𝑝 | − 1) (3)

where𝑇 𝑖,𝑘,𝑗𝑃 denotes the latency of the 𝑗𝑡ℎ process in𝑤𝑟𝑎𝑝𝑖,𝑘 ,𝑇𝐼𝑃𝐶
denotes the communication overheadwith another process through
Linux pipe, and 𝑃𝑖,𝑘𝑤𝑟𝑎𝑝 denotes the set of processes in𝑤𝑟𝑎𝑝𝑖,𝑘 . We
suppose there is no interaction time for thread communication
within a process due to the shared memory.

According to Observation 2, the overall latency of a process
can be estimated as follows,

𝑇
𝑖,𝑘,𝑗
𝑃 = ( 𝑗 − 1) ×𝑇𝐵𝑙𝑜𝑐𝑘 +𝑇𝑆𝑡𝑎𝑟𝑡𝑢𝑝 +𝑇

𝑖,𝑘, 𝑗
𝑒𝑥𝑒𝑐 (4)

where𝑇𝐵𝑙𝑜𝑐𝑘 and𝑇𝑆𝑡𝑎𝑟𝑡𝑢𝑝 indicate the block time and startup over-
head for forking a new process respectively, and are both estimated
with constant values. 𝑇 𝑖,𝑘, 𝑗𝑒𝑥𝑒𝑐 , the overall latency of executing mul-
tiple threads within a process, can be estimated through simulat-
ing GIL switching based on the mechanism shown in Figure 2 and
function behaviors extracted by Profiler.

Next, we show how the execution latency of a process in awrap.
namely, the overall latency of multiple threads within the process,
is predicted in Algorithm 1. The main thread is responsible for cre-
ating threads, and it is assumed that the same amount of functions
is started in each interval (Lines 4-5). When turning to a func-
tion, the thread executes continuously until timeout (Lines 8-9)
or a block operation occurs (Lines 14-16). When a function com-
pletes, the corresponding thread is destroyed and removed from
the scheduling list (Lines 10-11). To emulate the scheduling of the
operating system, the thread with the minimum CPU time from
the non-block threads is selected to hold the GIL according to the
Completely Fair Scheduler [43] (Line 17) at the end of each interval.
Finally, we derive the total latency of multiple threads when all of
them have finished (Lines 12-13).

3.4 Scheduler
Given the workflow profile and prediction model, we design PGP
to determine the optimal number ofwraps, as well as the processes

Algorithm 1: Multi-Threads Latency Prediction
Data:
𝐼 ⊲ The interval of switching threads;

Input:
𝑓 𝑠 ⊲ functions 𝑓1, 𝑓2, ..., 𝑓𝑞, ...;

Output:
𝑇𝑒𝑥𝑒𝑐 ⊲ The execution latency of multiple threads within a

process;
1 𝑇𝑒𝑥𝑒𝑐 ← 0;
2 𝑓 ←𝑚𝑎𝑖𝑛 𝑡ℎ𝑟𝑒𝑎𝑑 ; // the thread that holds GIL
3 while True do
4 if turn to main thread then
5 𝑓𝑥 , 𝑓𝑥+1, ..𝑓𝑥+𝑦 ← start 𝑦 functions in 𝐼 ;
6 else
7 // turn to function 𝑓
8 if no block op in this interval then
9 𝑇𝑒𝑥𝑒𝑐 ← 𝑇𝑒𝑥𝑒𝑐 + 𝐼 ;

10 if f is over then
11 remove 𝑓 from the scheduling list;
12 if all threads are over then
13 return𝑇𝑒𝑥𝑒𝑐 ;
14 else
15 𝑇𝑎𝑣𝑙 ← time before block;
16 𝑇𝑒𝑥𝑒𝑐 ← 𝑇𝑒𝑥𝑒𝑐 +𝑇𝑎𝑣𝑙 ;
17 𝑓 ← select the function which has the minimum CPU time

and is not block;

and threads in each wrap. However, unlike the k-balanced graph
partition problem in conventional distributed computing field, e.g.,
MapReduce, NFV,wrap partition for serverless workflowsmust ad-
dress three new challenges: two-layer (i.e., sandbox and process)
partition, unspecified amount of subsets, and dynamic cost of node
and edge cuts.Therefore, existing algorithms can’t be used directly
for our problem. To solve above challenge, we propose a heuristic
method based on the Kernighan-Lin partitioning algorithm [28].

The fundamental concept of PGP is to partition processes and
threads iteratively guided by latency prediction. After an initial
partition, predictions are continuously made and the wrap is re-
partitioned until the algorithm converges. Algorithm 2 shows the
details. We utilize an incremental iterative method to find the min-
imum number of processes in wraps that can satisfy the given
SLO (Line 1-5). In each iteration, PGP first determines the original
wraps which minimize block overhead and network communica-
tion through maximizing the number of processes in wrap1, while
only a single process in each of others (Lines 6-9). Subsequently, we
employ Kernighan-Lin algorithm [28] to derive the optimal wraps,
i.e., function partition with the lowest predicted latency (Lines 10-
11). Finally, PGP heuristically divides processes into as few wraps
as possible to achieve the optimal resource efficiency while ensur-
ing the specified SLO (Lines 13-16).

TheKernighan-Lin algorithm attempts to find a series of optimal
element swapping operations between each pair of sets to maximize
cumulative gains. In PGP, a set refers to the collection of functions
contained within a process, while element swapping refers to the
swapping of functions between two processes. We iteratively se-
lects functions that can minimize the predicted latency after swap-
ping them between two function sets, and records the latency ben-
efit of each swap operation (Lines 19-23). When all functions have
been interchanged, we choose the first 𝑘 swaps that can achieve
the lowest predicted latency cumulatively, and apply those opera-
tions to the original function sets (Lines 24-25).
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Algorithm 2: Wrap Scheduling
Input:
𝐺 ⊲ The stages of workflow;
𝑆𝐿𝑂 ⊲ The given SLO of workflow;

Output:
𝑃 ⊲ The function partitions;
𝑁 ⊲ The number of processes in wraps;

1 𝑀 ← the max parallelism of workflow;
2 𝑃 ← {}, 𝑁 ← {};
3 for 𝑛 in {1, 2, ..., 𝑀 } do
4 𝑇𝑤𝑜𝑟𝑘𝑓 𝑙𝑜𝑤 ← 0;
5 for stage i in G do
6 // init the number of processes in each wrap
7 𝑁𝑖 ← {𝑚𝑖𝑛 ( ⌊𝑇𝑅𝑃𝐶/𝑇𝐵𝑙𝑜𝑐𝑘 ⌋, 𝑛), 1, ..., 1...};
8 // init partition of n processes
9 𝑃𝑖 ← {{ 𝑓1, 𝑓𝑛+1, ...}, { 𝑓2, ...}, ..., { 𝑓𝑛, ...}};

10 for function set 𝐴 ∈ 𝑃𝑖 , 𝐵 ∈ 𝑃𝑖 do
11 𝐾𝑒𝑟𝑛𝑖𝑔ℎ𝑎𝑛𝐿𝑖𝑛 (𝐴, 𝐵) ; // minimize latency

12 𝑇𝑤𝑜𝑟𝑘𝑓 𝑙𝑜𝑤 ← 𝑇𝑤𝑜𝑟𝑘𝑓 𝑙𝑜𝑤 +𝑇 𝑖
𝑠𝑡𝑎𝑔𝑒 ;

13 if 𝑇𝑤𝑜𝑟𝑘𝑓 𝑙𝑜𝑤 ≤ 𝑆𝐿𝑂 then
14 for 𝑠𝑡𝑎𝑔𝑒𝑖 in G do
15 // find optimal 𝑁𝑖
16 𝑁𝑖 ← deploy max processes in each wrap;
17 return 𝑃, 𝑁 ; // find solution

18 Function KernighanLin(A, B):
19 𝐴

′
, 𝐵
′ ← 𝐴, 𝐵; // copy function set for swapping

20 while |𝐴′ | > 0 and |𝐵′ | > 0 do
21 𝑎,𝑏 ← swap 𝑎 ∈ 𝐴′ , 𝑏 ∈ 𝐵′ that minimize latency;
22 𝑔← 𝑇𝑏𝑒𝑓 𝑜𝑟𝑒 − 𝑇𝑎𝑓 𝑡𝑒𝑟 ; // record latency benefit

23 𝐴
′ ← 𝐴

′ − 𝑎, 𝐵′ ← 𝐵
′ − 𝑏;

24 𝑘 ← argmax𝑘
∑𝑘

𝑖=1 𝑔𝑖 ; // choose 𝑘 to minimize latency
25 move 𝑎1, ..., 𝑎𝑘 to 𝐵 and 𝑏1, ..., 𝑏𝑘 to 𝐴;
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Figure 11: Scheduling FINRA-100 using PGP.

Figure 11 illustrates an example of PGP applied to the FINRA ap-
plication with a degree of parallelism of 100. First, PGP attempts to
execute all functions within a single process Ê, but the predicted
latency of 1578 ms exceeds the SLO Ë. Subsequently, PGP explores
the optimal partition by swapping functions between processes
while increasing the number of processes Ì. Finally, PGP iden-
tifies the partition with the minimal latency of 197 ms using 17
processes, which meets the 200 ms SLO. Moreover, it divides the
processes into 4 wraps Í.

Notably, not all functions of aworkflow can share the same sand-
box due to conflict between language runtimes (e.g., Python 2 and
Python 3) or package dependencies. Thus, some functions must
still execute in separate sandboxes, namely, a wrap that only con-
tains one function. Moreover, functions that need to process the
same file cannot share sandbox, as it can lead to unexpected re-
sults. Figure 10 shows how Profiler traces files processed in during

function execution, which can be used to measure if the functions
need to be partitioned into different wraps.

Upon determining the optimal wraps using PGP offline, subse-
quent requests of the workflow can reuse these wraps to avoid the
scheduling overhead. Additionally, the Profiler and PGP are re-run
periodically to update wraps, enabling them to adapt to changes in
the workload.

4 MEMORY ISOLATION BETWEEN THREADS
While the thread execution inwrap can improve both performance
and resource efficiency, it raises privacy concerns as the unrestricted
sharing among multiple threads can potentially lead to the expo-
sure of sensitive data in trusted functions.

Software-fault isolation (SFI) [56, 62] provides memory isolation
at the thread level by translating applications toWebAssembly and
executes each function within a lightweight isolation abstraction,
which has a dedicated thread and can access data in shared mem-
ory regions directly. On the other hand, Intel Memory Protection
Keys (MPK) [25] can also achieve private arenas for each thread
through assigning specific keys to pages and controls access rights
to them, providing hardware support for page partitioning.

Isolation
Mechanism

Startup
Overhead

Interaction
Overhead

Execution
Overhead

Fibonacci DiskIO
SFI 18 ms 8 ms 52.9% 29.4%

Intel MPK 0.2 ms 0 35.2% 7.3%
Table 1: The Comparison of SFI and Intel MPK.

Weconducted an evaluation of SFI and IntelMPKusing a Python
application on our testbed (Table 2), and show the results in Table 1.
Our findings indicate that SFI introducesmuchmore startup and in-
teraction overhead compared to process. With regards to function
executions, bothWebAssembly [26] and Intel MPK [45] incur more
instructions and performance degradation, but Intel MPK suffers
less overhead than WebAssembly. Therefore, in case of memory
isolation is required, we choose Intel MPK to enhance memory pri-
vacy for thread execution in Chiron. For a fair comparison, Chiron
only employs thread execution with Intel MPK for sequential func-
tions and forks multiple processes to execute parallel functions in
our evaluation.
True Parallelism. Although the combined process and thread can
improve resource efficiency, it is still subject to additional execu-
tion latency arising from the GIL. To achieve the optimal perfor-
mance,Chiron necessitates an executionmechanism that facilitates
true parallelism for all functions.

There have been several attempts to remove theGIL fromPython [19,
24, 57], but such efforts incur more than 10% overhead in single-
threaded performance, in addition to compatibility issues [24].There-
fore, we continue to employmultiple processes to support true par-
allelism, but uses a process pool instead of forking new processes
for each request to avoid the long startup overhead.

Due to the little startup overhead and true parallelism in a pro-
cess pool, we can deploy all functions within a workflow in a sin-
gle wrap (i.e., 𝑛 = 1 for the “m-to-n” model) to avoid network cost.
Within the pool-based wrap, Chiron enables CPU sharing between
processes by setting affinity of each process to a specific CPU to
derive the optimal resource efficiency.
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5 IMPLEMENTATION
We implement Chiron in Python 3.11 atop OpenFaaS[36], a widely
used open-source serverless computing platform.The components
including Profiler, Predictor, Scheduler and Generator are all non-
invasive plug-ins in the form of web services built upon Flask [44].
Chiron is publicly available at https://github.com/tjulym/Chiron.
Profiler: After receiving workflow submission from user, Profiler
obtains the pid of each function’s sandbox through APIs provides
by Docker and gateway in OpenFaaS. Then, it employs the subpro-
cessmodule of Python to invoke strace syscall to profile the latency
and block periods of each function under solo-run.
Scheduler: It can use multiple processes to explore wrap partition
under various number of processes in parallel to improve schedul-
ing efficiency. It also adopts cgroups to allocate CPUs for wraps.
Generator: It produces the orchestrator code as the function en-
try (e.g., handler.py of the python template in OpenFaaS), uses
the psutil [51] library to set CPU affinity for each process to iso-
late resources within a wrap. For a better performance efficiency,
we use python3-flask template to deploy wraps, which employs
of-watchdog [35] that supports HTTP proxying instead of classic-
watchdog [34] that forks a new process for each request. To support
Intel MPK, we also create a new template in OpenFaaS that con-
tains the mpk-memalloc-module [30], and build images with wrap
codes. As for process pool, wrap starts ProcessPoolExecutor when
initializing sandbox based on the official Python library [18].

6 EVALUATION

Configuration

Hardware CPU: Intel Xeon Gold 6230 @2.1GHz * 40
DRAM: 128GB, Disk: 960GB SSD, Nodes: 8

Software
Operating system: Ubuntu 16.04

Docker server and client version: 20.10.7
Kubernetes server and client version: 1.23.6

Table 2: Experimental testbed configuration.

Testbed and Benchmarks: We conduct the experiments on a lo-
cal cluster with configurations shown in Table 2. The benchmarks
employed are summarized as follows:
• Social Network [23] (SN) comprises 4 stages and 10 func-

tions, with the maximum parallelism of 5.
• Movie Reviewing [23] (MR) comprises 4 stages and 9 func-

tions, with the maximum parallelism of 4.
• SLApp is produced from [33] and comprises 2 stages and 7

functions, each has similar latency but falls into three work-
load types, i.e., CPU intensive, disk I/O intensive, and net-
work I/O intensive. Note that there is no sequential function
in SLApp, with the maximum parallelism set at 4.
• SLApp-V is a variant of SLApp, which is also generated from

[33] and comprises 5 stages and 10 functions, with the max-
imum parallelism of 5.
• Financial Industry Regulation (FINRA) [2, 30] comprises 2

stages, and we configure varying numbers of parallel func-
tions, including 5, 50, 100 and 200, for evaluation.

Metrics and comparison algorithms: Our evaluations center
around the following metrics: (1) the accuracy of performance pre-
diction, (2) end-to-endworkflow latency, and (3) resource efficiency

and dollar cost. we evaluate Chiron against several popular com-
mercial and open-source serverless platforms. This includes AWS
Step Functions [54] and OpenFaaS [36], which both adopt the “one-
to-one” model, as well as SAND [1] and Faastlane [30], which are
based on the “many-to-one” model. In particular, SAND executes
each function in a separate process, while Faastlane uses thread
execution in a sequential function to reduce the function interac-
tion overhead. We also evaluate the performance of Chiron and
Faastlane using IntelMPK (Chiron-M and Faastlane-M) and process
pool (Chiron-P and Faastlane-P). Notably, process pool can achieve
similar performance to that of multiple threads without the GIL.
Throughout our evaluation, we use a whole CPU as the allocation
unit, and for a fair comparison, we configure respective functions
in AWS Lambda such that the execution time of ASF matches that
of our local cluster.

6.1 Prediction Error
The prediction error is defined as (𝑃 − 𝑃)/𝑃 , where 𝑃 and 𝑃 de-
note the predicted latency and the actual value, respectively. We
compare the Predictor of Chiron against Random Forest Regression
(RFR), Long Short-TermMemory (LSTM), andGraph Neural Network
(GNN). We exploit all possible wraps in SN, MR, SLApp, SLApp-V
and FINRA-5 applications using native thread, Intel MPK and pro-
cess pool implementations for evaluation. And the details of mod-
els are summarized as follows:
• RFR is employed to predict the latency of multiple threads

as Algorithm 1, and the features utilized include each func-
tion’s solo-run latency,Context-switches, L1IMPKI, LIDMKPI,
L2 MPKI, L3MPKI, TLBD MPKI, TLBI MPKI, Branch MPKI,
MLP, CPU utilization,Memory utilization, Network bandwidth,
LLC, IPC, Disk IO and Memory IO, which are recommended
by Gsight [65]. And this model is built using RandomFore-
stRegressor [52] module from scikit-learn library, with de-
fault parameters.
• LSTM shares the same input and output as RFR. It is con-

structed based on the LSTM [21] module from PyTorch. We
evaluate the LSTM model with multiple learning rates, in-
cluding 0.1, 0.01, 0.001, and 0.0001, and find that 0.01 yields
the best accuracy. Therefore, we set the learning rate to 0.01
for our experiments. On the other hand, we set the batch
size to 1, while keeping the other hyper-parameters at their
default values.
• GNN ’s input consists of a feature matrix that utilizes the

aforementioned function features, as well as an adjacency
matrix that represents the relationships between threads,
processes, stages, and workflows within wrap. And it out-
puts the end-to-end latency of workflow. We use PyTorch to
implement thismodelwith hyper-parameters recommended
by Eagle [10].

Prediction accuracy: Chiron averages 6.7% error in predict-
ing the overall latency. Figure 12 shows the distribution and
average value of the prediction errors across various models. The
mean absolute prediction errors ofChiron range from 1.4% to 14.2%.
In most cases, our predictor exhibits the highest precision, reduc-
ing the prediction error by 78.1%, 86.6% and 70.1% on average, when
compared to RFR, LSTM and GNN, respectively. While Learning

https://github.com/tjulym/Chiron
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Figure 13: The comparison of normalized workflow end-to-end latency under various deployment models.

models sometimes achieve better precision than our Predictor (e.g.,
GNN for SLApp-V), their lack of diversity in training data, includ-
ing various structures of workflows and function workloads, can
limit their applicability. Overall, our Predictor achieves 6.7% pre-
diction error on average with little profiling overhead, making it
much more efficient than building learning models.

6.2 Overall Performance
End-to-end workflow latency:Chiron can respectively reduce
the overall latency of workflow by up-to 53.8% and 43.4%
over OpenFaaS and Faastlane. We measure end-to-end latency
by executing eachworkflowwithout cold start at least 10 times and
show the average values in Figure 13.The SLO for Chiron is defined
as the average latency of Faastlane with an additional 10 ms slack.
Our results show that the scheduling latency ofASF for FINRA-200
reaches more than 8s, highlighting the need to increase the deploy-
ment granularity for latency-sensitive applications. While Open-
FaaS demonstrates better performance than SAND in some cases
due to efficient network communication in local cluster, the sched-
uling and interaction overhead in the “one-to-one” model continues
to increase with the increment of parallel functions. For MPK and
pool-based methods, wherein all parallel functions have the same
execution mode, Chiron can still achieve similar and even better
performance. Overall, Chiron reduces the end-to-end latency by
an average of 89.9%, 37.5%, 32.1% and 25.1% over ASF, OpenFaaS,
SAND and Faastlane with native thread, respectively.
SLO violation:Chiron can guarantee the latency SLOofwork-
flows. Figure 14 shows the SLO violation rate of Chiron averages
at 1.3%, which is significantly lower than that of Faastlane. In fact,
Chiron adopts larger parameters to estimate the latency, avoiding
performance violation resulting from mispredictions.
Startup overhead:Chiron can significantly reduce startup over-
head for parallel functions while introducing little effect to
function execution. Figure 15 employs the latency CDFs of the
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parallel functions to show the influences of different deployment
models on startup overhead and function execution. The blue dot-
ted line (Faastlane-P) has the lowest startup time due to the usage
of process pool. However, when there are an excessive number of
functions in the process pool, long-running functions may suffer
block and scheduling overhead, leading to long-tail execution in
the last phase. On the other hand, all Chiron (solid lines) methods
start functions and complete execution faster than others. While
Chiron-P introduces more startup overhead for some functions due
to the share of CPUs, long-running functions are started preferen-
tially to mitigate the influence of skew execution and achieve the
optimal latency among all systems. Overall, Chiron is up to 32.5%
faster than Faastlane-M and Faastlane-P regardless of whether suf-
fering from startup overhead.

6.3 Resource Efficiency
Memory consumption: Chiron can respectively save up-to
97% and 22% memory resources over OpenFaaS and Faast-
lane. Figure 16 shows the memory consumed under different plat-
forms. OpenFaaS always requires the maximum memory due to
the redundancy of language runtime and libraries between sand-
boxes in the “one-to-one” deployment model. When compared with
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more processes in the “many-to-one” model, the shared memory
between multiple threads help Chiron to further reduce 10% mem-
ory consumption on average compared with Faastlane. Chiron-M
amortizes startup overhead in 6, 9 and 14 sandboxes for FINRA-
50, FINRA-100 and FINRA-200 respectively, leading to 2.2×-3.7×
memory cost than Faastlane-M. For systems using process pool,
the long-running processes consumes more than 5× memory to
avoid duplicate startup overhead.
CPU consumption:Chiron can save up-to 94%CPU resources
over OpenFaaS and Faastlane. Figure 17 reports the normalized
number of allocated CPUs under various platforms. Faastlane re-
cycles CPUs between stages instead of allocating separate CPU re-
source for each function inOpenFaaS. But it requires the same num-
ber of CPUs as the maximum parallelism in DAG to ensure true
parallelism. In comparison, Chiron explores the minimum number
of CPUs while guaranteeing latency SLO through function parti-
tion which makes full use of trade-offs between true and pseudo-
parallelism. As we can see, Chiron can reduce 75%, 66% and 63%
CPU cost than Faastlane with native thread, Intel MPK and pro-
cess pool, respectively.
Throughput: Chiron can improve system throughput by up-
to 39×. Given the limited resources in each worker, we show the
normalized maximum RPS in Figure 16. Due to the both better per-
formance and resource efficiency, Chiron can improve the through-
put by 12.2×, 6.5× and 4.1× on average compared with Faastlane,
Faastlane-M and Faastlane-P, respectively. Although pool-based sys-
tems experience the optimal latency because of native true paral-
lelism, the higher resource requirements results in lower through-
put than Chiron with native threads in most cases.
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Figure 18: The comparison in Java. Chiron can improve system
throughput by up-to 4.9× under true parallelism.

No GIL: Chiron can also improve throughput by up-to 4.9×
w/o GIL. We further evaluate the performance of serverless work-
flows in Java, enabling the true parallelism of native threads, and
show the results in Figure 18. Although Chiron is reduced to only
thread execution, it can also achieve 5× and 3.1× system through-
put over the “one-to-one” model and “many-to-one” model, respec-
tively, due to the better resource efficiency.
Cost efficiency: the “m-to-n” deployment model can help de-
velopers reduce the cost of workflow by 23.1%-99.6%. We de-
rive the dollar cost of each methods based on $0.0000025 for GB-
Secondmemory and $0.0000100 for GHz-SecondCPU [7], and show
the normalized costs in Figure 19. The “one-to-one” model has to
additionally pay for every state transition between functions [54],
then costs 272× over Chiron at most. Due to performance and re-
source advantages, Chiron reduces 44.4%-95.3% dollar cost than
Faastlane. Although Chiron-M and Chiron-P consume much more
memory, the significant reduction in CPU allocation still helps to
save 65.2% and 62.1% cost on average compared to Faastlane-M and
Faastlane-P, respectively. Chiron can lead to higher cost reduction
when CPU scales proportionally with memory due to the over-
provisioning of memory. In short, the “m-to-n” model is the most
cost efficiency among all deployment models.
Resource overhead:Chiron generates negligible overhead in
system resource consumption. Each component in Chiron con-
sumes no more than 40MB memory. For CPU cost, both Profiler
and Generator use less than 0.1 core. Chiron allocate 1 core for the
PGP module by default, which can also use more cores to explore
multiple partitions in parallel to improve the scheduling efficiency.
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Figure 19: The comparison of cost (in USD) per 1 million
workflow requests normalized by Chiron. Chiron can save dol-
lar cost by up-to 99.6%.

7 DISCUSSION
Scalability. Although PGP can incur minute-level overhead when
orchestrating large workflows (e.g., hundreds of functions), wrap
scheduling operates in an offline manner and does not affect the
real-time response latency of requests. Specifically, the scalability
of PGP may be limited by three factors: (1) Iterative exploration: ex-
ploring the desired number of processes incrementally. This mod-
ule can be parallelized to speed up scheduling in large workflow
scenarios. (2) Kernighan-Lin algorithm: exploring the optimal par-
tition given a specific number of processes. This module exhibits
the highest complexity, but still operates in an offline way. Further-
more, other optimization algorithms can also be employed for par-
titioning. (3) Prediction: estimating the latency of multiple threads.
This component maintains sub-millisecond overhead even in sce-
narios with hundreds of threads and exhibits good scalability. Ad-
ditionally, when there are an excessive number of wraps in a work-
flow, the current centralized scheduling architecture of Chiron can
lead to high real-time request scheduling overhead, similar to the
“one-to-one” model. Decentralized scheduling, which offloads func-
tion scheduling to each worker node, is orthogonal to Chiron and
can help mitigate this issue.
Application scenario. AlthoughChiron has demonstrated remark-
able improvements in parallel-structured DAG workflows, such as
average latency reduction of 25% and 12× increase in through-
put compared to existing methods, further investigation and re-
search are still warranted in the following scenarios. (1) Incom-
patible functions: where runtime or dependency conflicts prevent
functions from executing concurrently within the same instance.
(2) Dynamic DAGs: where the function chain of workflow is not
known a priori, such as switch step in Video-FFmpeg [6] deter-
mines whether to execute the split function or the simple_process
function based on the result of the upload function.

8 RELATEDWORK
One-to-Onemodel.The current serverless platforms deploy func-
tions in separate sandboxes which leads to frequent cold start and
high interaction latency in workflow. Pocket [29], Crucial [46], and

Cloudburst [58] adopt specialized distributed remote stores to mit-
igate interaction overhead. Nightcore [27] executes functions on
the same server and designs message channels for IPC to reduce
RPC overhead. FaaSFlow [32] partitions the workflows into sub-
graphs based intermediate data size, and enables the direct data
movement through in-memory storage. Xanadu [8] andORION [38]
pre-warm functions to avoid cascading cold starts in workflow. Al-
though these systems do obtain performance improvement, the in-
teraction overheads and resource redundancy are still significant.
Many-to-One model. Some researchers enlarge the deployment
granularity through executing functions within a workflow in a
shared sandbox. SAND [1] designs application-level sandboxing
and executes functions in separate process to provide lower la-
tency. WuKong [4] adopts decentralized scheduling to reuse ex-
ecutors to enhance the data locality. SONIC [37] transparently se-
lects the optimal data-passing method for each edge of a serverless
workflow DAG. Faastlane [30] uses thread execution where func-
tion can communicate through memory load/store instructions to
minimize function interaction latency even further. However, we
observe that these methods have not taken into account the block
latency, where subsequent processes need to wait for the com-
pletion of forking all previous processes. And this overhead can
even be comparable to cold start, leading to sub-optimal perfor-
mance. Although some runtimes [11, 27, 56] allow true parallelism
of multiple threads, the uniform resource allocation mechanism
overlooks theworkload heterogeneity, and leads to severe resource
inefficiency.

9 CONCLUSION & FUTUREWORK
This paper presents Chiron, a new “m-to-n” deployment system for
efficient serverless workflow by partitioning functions into multi-
plewraps, and executing themwith combined processes and threads.
Chiron has two key attributes. (1) High performance: Chiron can re-
duce startup overhead significantly while introducing little influ-
ence on interaction and function execution. (2) Resource efficiency:
Chiron exploits the deployment granularity of wrap with the min-
imum amount of CPUs while guaranteeing the latency SLO.

In the future, we would like to expand Chiron’s capabilities to
public cloud scenarios by incorporating strong yet lightweight iso-
lation mechanisms.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://zenodo.org/badge/latestdoi/679963244

ARTIFACT IDENTIFICATION
0.1 Abstract
We implement the Chiron system in OpenFaas v0.21.1, and run it on
a Kubernetes v1.23.6 cluster. Chiron is designed to deploy server-
less workflows with "m-to-n" model, i.e., partitioning functions
into multiples wraps, which executes functions with combined
processes and threads. It can achieve high performance and re-
source efficiency, leading to 1.3×-21.8× on system throughput over
state-of-the-art systems. The source code of Chiron is released in
https://github.com/tjulym/Chiron. We provide function codes and
test tools for easily reproducing our evaluations, and those com-
ponents that can generate orchestrator code and deploy functions
based on the workflow and SLO submitted by user. This document
will guide user to reproduce the experimental results step by step.

REPRODUCIBILITY OF EXPERIMENTS
0.2 Meta information

• Program: Linux kernel 4.18.0, Docker 20.10.7, Kubernetes
v1.23.6.

• Data set: Generated by the client responsible for each work-
flow.

• Run-time environment: Ubuntu 16.04.
• Hardware: Intel x86 servers connected via 10 Gbps, full-
bisection bandwidth Ethernet. Minimum of 3 servers re-
quired to fully replicate our results. And each server requires
at least 20 cores.

• Benchmark: Social Network, Movie Reviewing, SLApp,
SLApp-V and Financial Industry Regulation with various
degrees of parallelism.

• Comparison systems: OpenFaaS, SAND, Faastlane.
• Output: Scripts for reproducing results of each workflow
and metric are included in the artifact.

• Howmuch disk space required (approximately)?: 6GB+
per server to store images.

• How much time is needed to complete experiments
(approximately)?: 2+ hours.

0.3 Installation
Users need to install OpenFaaS, benchmarks and Chiron on a Ku-
bernetes cluster with at least 3 servers. Ubuntu 14.04 or 16.04 is
recommended for each server.
OpenFaaS: Please refer to Installation/README.md for Docker,
Kubernetes and OpenFaaS installation in each server.
Benchmark: Please refer to README.md of each sub-directory in
Benchmark directory for workflow installation in OpenFaaS. We
provide scripts named deploy.sh to assist with installation.

Chiron: Please refer to README.md of Profiler, Scheduler and Gen-
erator for Chiron installation. The components of Chiron serve as
web services built upon Flask framework.

0.4 Evaluation and expected results
We provide separate sub-directories to evaluate the prediction error,
end-to-end latency, resource efficiency, respectively. These scripts
will return the detail results, and codes for plotting figures in our
evaluation is available.
Profiler: Users can directly use the wrap code generated in our
environment. Or you can profile every function to drive the latency
and block periods under solo-run, and then generate the wraps.
Please refer to README.md of Profiler, Scheduler and Generator for
details.
Prediction error: Scripts of Evaluation/prediction/loss-com.py can
output the prediction errors of each model directly. Or, user can gen-
erate various wrap codes and evaluate corresponding performance
based on wrap partitions in Evaluation/prediction/wraps. Then, cal-
culate the prediction based on the estimated value and actual value.
Overall performance: Please refer to Evalua-
tion/latency/README.md. We provide a script named run.py for
each workflow to evaluate the end-to-end latency of all systems,
and then, show the expected and actual improvements of Chiron
over others.
Resource efficiency: Please refer to Evalua-
tion/resource/README.md.

• CPU costs: Please refer to Evaluation/resource/cpu_com.py.
The CPU cost of Chiron is one of the results that determined
by the Scheduler module. As for other systems, the CPU costs
are constant.

• Memory costs: Please refer to Evalua-
tion/resource/mem_com.py, which calculates the memory
consumption for each workflow based on docker stats.

• Throughput: Please refer to Evaluation/resource/throughput.
Each sub-directory corresponds to the experiment of a work-
flow with various methods. Within each directory, we pro-
vide a script named run.py to get the throughput in 1 second.

• No GIL: We provide implementation of SLApp
and FINRA-5 by Java. First, refer to Evalua-
tion/resource/no_gil/functions/deploy.sh for benchmark
installation. Then, run lat_com.py and th_com to evaluate
the latency and throughput.

• Cost efficiency: Please refer to Evalua-
tion/resource/cost_com.py. We provide the script to
calculate the dollar cost of each method for every workflow,
based on CPU frequency, execution time and memory costs.
Note that this calculation assumes CPU and memory can
be independently scaled and charged. And Chiron can lead
to more cost reduction when not independent because of
the redundant memory allocation for multiple CPUs. For
example, a function has the equivalent of one vCPU when
configure the memory to 1,769 MB in AWS Lambda.

https://github.com/tjulym/Chiron
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ARTIFACT DEPENDENCIES REQUIREMENTS
• Program: Linux kernel 4.18.0, Docker 20.10.7, Kubernetes
v1.23.6, OpenFaaS v0.21.1.

• Run-time environment: Ubuntu 16.04.
• Hardware: Intel x86 servers connected via 10 Gbps, full-
bisection bandwidth Ethernet. Minimum of 3 servers re-
quired to fully replicate our results. And each server requires
at least 20 cores.

• Software: Python3 with flask, waitress, requests, matplotlib,
pandas, seaborn.

• Benchmark: Social Network, Movie Reviewing, SLApp,
SLApp-V and Financial Industry Regulation with various
degrees of parallelism.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

(1) Environment Installation: please refer to Installation direc-
tory.

(2) Benchmark Installation: please refer to Benchmark and Eval-
uation directory.
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