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Abstract—To reduce the cost of online cloud services, service
providers often employ the elastic approach that allows tenants to
“scale out” or ‘““scale up” their applications at runtime. However,
the traditional virtual machine-based approach cannot meet the
fine-grained fluctuating demand due to its slow startup time and
high reconfiguration cost. To address this challenge, we present
ElaX, an online service manager that minimizes the resource
provisioning cost for containerized online services while guaran-
teeing their tail latency requirement. ElaX designs a workload-
aware resource allocation mechanism for containerized online
services through the collaboration of three key components: First,
workload predictor is able to precisely predict the workload in
periodic scenario, through a LSTM (Long Short-Term Memory)
network; Second, resource reservation allocates the just-right
amount of resource supporting the predicted workload, using
the combination of both scale-up and scale-out operations; Third,
online controller guarantees the tail latency requirement through
a feedback-based control method, and further reduces the provi-
sioning cost through resource reclamation. Our experiments on
the two production workloads demonstrate that, when compared
with existing methods, ElaX can reduce the average resource
over-provisioning cost by more than 32.6% while guaranteeing
the tail latency requirement.

Index Terms—Cloud Computing, Resource provisioning, Tail
Latency, Containers

I. INTRODUCTION

Cloud computing frees service developers from complex
and complicated maintenance work on hardware infrastructure,
through simply renting the needed computing capacities (e.g.,
servers, storage, network.) from cloud providers, and paying
for resource on demand. While users would always like to
cut the cost of renting through precise shaping of resource
requirements of their services, cloud providers cannot offer
stable quality of services (QoS) due to the constantly changing
workload [4] and unpredictable resource contention from the
tenants sharing the cloud [6, 13, 21]. Hurting user experience
is rather costly, for example, just one-second slowdown of
page loading could cost $1.6 billion in sales of Amazon
[10]. In this case, users have to resort to resource over-
provisioning for guaranteeing their QoS. However, wasteful
over-provisioning results in low resource utilization, thereby
increasing the cost of cloud services. For example, resource
reservations by Twitter could reach up to 80% of total capacity,
while their production cluster’s CPU utilization is constantly
below 20% [7]. Similarly, traces from both Google [28] and
Aliyun [23] showed that they merely achieve aggregate CPU
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utilization of 25-35% and aggregate memory utilization of
40%.

How to reduce the resource provisioning cost while guar-
anteeing the QoS is a significant challenge. To address this
challenge, the existing work [12, 30] have been able to scale
service cluster through increasing or decreasing the number of
virtual machines (VMs), according to the fluctuating workload.
However, workload-aware resource scaling systems [20, 31]
support resource scaling only for batch jobs, and can not be
directly applied to resource allocation for online service due
to the long-term running feature. Even for online services, the
VM-based scaling approaches are rather costly, since starting
or reconfiguring a VM usually takes minutes, which is far
longer than the millisecond-level tail latency SLO (service
level objective) [5, 19]. If the workload towards a service
changes significantly in a short time, a reactive VM scaling
operation could be too slow to take effect. Fortunately, the
advent of the lightweight container model [9] enables runtime
resource reconfiguration in a small-time granularity, making
scaling much simple and easy. EFRA [4] supports resource
scaling-up for container-enabled cloud systems. However, their
solution can only applicable in workload with strong stable
periodic features, and does not support the flexible scaling-
out and scaling-up combined decision. In addition, while
Kubernetes [2] can both scale-out or scale-up the service
cluster, its feedback-based approach cannot strictly guarantee
the SLO.

In this work, we aim to further reduce the resource pro-
visioning cost for long-running online services with the tail
latency SLO guarantee. Since reducing the provisioned re-
sources highly risk SLO violations, when and how many re-
sources to scale should be very carefully decided. We suggest
to scale the allocated resources both horizontally (scale-out)
and vertically (scale-up), depending on the workload and cloud
system status. There are several challenges towards this goal.
First, although the production workload has shown periodic
features, their periods are not always stable. Noises, like
incremental periodical load, bursts and weekend drop, severely
increases the prediction error, making the workload prediction
extremely difficult. Second, given the workload estimates, how
to derive the just-right amount of resources supporting this
workload is also not easy. In particular, although the container
technique provides a lightweight way for resource scaling,
scaling-up and scaling-out still perform differently on startup
costs. The optimal combination of scale-up and scale-out
should be derived. Third, as the prediction error is inevitable,
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Fig. 1: The resource reservation by Peak, PRESS, EFRA under ClarkNet (a) and Calgary traces (b); The resource-performance

bottleneck in Redis service node (c).

how to guarantee the tail latency SLO under prediction error
is also a challenge.

We present ElaX, a resource scaling engine that minimizes
the resource provisioning cost for containerized online services
while guaranteeing the tail latency SLO. ElaX reduces the
resource over-provisioning cost through a workload-aware
resource scaling method. Compared with existing systems
[4, 12, 30], ElaX improves the prediction accuracy in non-
stable periodic workload and supports the combined scaling-
up and scaling-out operation for minimizing the startup cost.
It also integrates the feedback-based QoS management policy
to avoid the possible SLO violations under prediction error.
Our contributions can be summarized as follows:

1) To improve the prediction accuracy under non-stable
workload, we filter out the noises in the historical
workload data series using the SSA (Singular Spectrum
Analysis) method [26], and utilize a deep learning method
to predict the future workload. The evaluation result
shows that our method can improve the prediction accu-
racy significantly, especially for the non-stable periodical
workload.

We build a resource-performance model to character-
ize the relation between resource allocation and service
throughput, directing the resource requirement for sup-
porting the predicted workload. Then, we consider the
resource-performance bottleneck and the heterogeneity of
servers and derive the optimal combination of scaling-out
and scaling-up operations for resource reservation.

We employ a feedback-based online controller to avoid
the possible SLO violations due to the prediction error
and present a resource reclamation mechanism to re-
allocate the over-provisioned resources at a small-time
granularity.

We implement ElaX based on Docker engine [3] and eval-
uate its efficiency in redis cluster and e-commerce with
two different production workloads. Experimental results
show that, when compared with existing four methods,
ElaX reduces the average resource over-provisioning cost
by >32.6% while guaranteeing the tail latency SLO.

2)

3)

4)

II. MOTIVATION

The periodic feature of access load towards an online
service has been detected and confirmed repeatedly [4]. It is
straightforward to reduce the over-provisioning cost through
a workload-aware resource allocation method. However, pre-
vious work either is rather conservative in prediction, leaving
a significant space for further reducing the cost, or underes-
timates the workload, resulting in SLO violations. We deploy
an online service of redis [27] cluster, and experimentally
evaluate the four existing resource scaling methods (including
Peak [11], PRESS [12], EFRA [4] and Kubernetes [2]) using
two production workloads ClarkNet and Calgary [18] as the
request workload modes. The results are showed in Table 1.

TABLE I: Comparison of existing methods

Prediction Error SLO Scale

Method
ClarkNet | Calgary | Guarantee | up | out
Peak 82% 148% Yes Yes | No
PRESS 5% 18% No Yes | No
EFRA 37% 73% Yes Yes | No
Kubernetes - - No Yes | Yes
ElaX 6% 15% Yes Yes | Yes

Peak [11] always chooses the maximum workload from the
corresponding point in each historical period as the predicted
value. Although this conservative policy can be very safe in
enforcing the tail latency SLO, it wastes a large number of
resources. Fig. 1(a) and Fig. 1(b) show that it provisions 75%
and 124% more resources than the actual demands in ClarkNet
and Calgary cases, respectively.

PRESS [12] derives the mean value of the corresponding
points in each historical period as the predicted workload. It
decreases the prediction error to 5% and 18% in ClarkNet and
Calgary respectively. However, we find that this way always
underestimates the actual resource demand and cannot strictly
guarantee the SLO (see section IV).

EFRA [4] derives the “best-fit” period pattern based on the
historical data and predicts the resource usage through a
collaborative filtering-based recommendation method. It can
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achieve a very low prediction error only when the periodic
feature is stable. However, the periodic feature may vary
over time. For example, the seven days trace for ClarkNet
shows a significant drop in the weekends (Fig. 1(a)), while
the actual resource requirements in each period of Calgary
continuously increase from Monday to Sunday (Fig. 1(b)).
These trends do not affect the period length, but the actual
resource requirements are different among periods. Thus, the
overall prediction error by EFRA could achieve as high as 73%
in Calgary case.

Kubernetes [2] supports both scale-out and scale-up opera-
tions through the HPA (Horizontal Pod Auto-scaling) and VPA
(Vertical Pod Auto-scaling) techniques, respectively. However,
they make resource scaling decisions only relying on the
passive feedback from QoS monitoring, and does not support
the workload prediction.

Workload-aware resource scaling engine heavily relies on
the accuracy of workload prediction to reduce the resource
over-provisioning cost. However, there still lacks a precise
predictor that works well in unstable workload environment. In
addition, the scale-up and scale-out operations may generate
completely different performance improvement effects. Even
for the same operation (either scale-up or scale-out), its impact
on QoS also varies over the intensity of workload. Fig. 1(c)
shows that when the CPU utilization exceeds 40%, the scale-
up operation will not improve the throughput of redis quickly
any more. That is, CPU is no longer the bottleneck resource
for redis at this time, and it is better to employ the scale-out
operation to support the processing of more requests in this
case. Hence, the resource scaling engine should launch the
scale-out and scale-up operation in a combined consideration
based on the resource status and precise workload prediction.

IIT1. ELAX DESIGN

In this section, we present our design of ElaX and show how
ElaX can reduce the resource over-provisioning cost based on
the workload prediction.

A. Overview

Fig. 2 shows the system architecture of ElaX. It is designed
to operate in a container-enabled system where each service
instance runs as a container. We choose the container instead
of virtual machine because it enables the resource adjustment
operations without stopping and restarting the container, and
the operation can take effect in tens of milliseconds. ElaX
consists of three components as follows:

Workload predictor learns from historical workload and
makes prediction on the next workload. To improve the
accuracy of prediction under unstable periodic workload, we
preprocess the historical data using the SSA method, then
train a LSTM (Long Short-Term Memory) [17] network for
prediction.

Resource reservation builds a resource-performance model
to estimate the required resources supporting the predicted
workload. It formulates the resource scaling as a mathematical
programming problem considering the operation cost of scale-
up and scale-out. Then, it derives the optimal scale-up and
scale-out combination with minimum cost.

Online controller dynamically adjusts the allocated resources
for the service during runtime. It is activated whenever the
tail latency is close to SLO violation. Meanwhile, when the
SLO returns to the safe level, we also design a resource
reclamation algorithm to recycle the unnecessary resources
for higher resource efficiency. The controller is implemented
based on Linux’s cgroups.

For workload predictor, since training a LSTM network
takes time (around 30 minutes) and the model is usually
stable enough within one period (e.g., one day in production
environment), we just update the LSTM network once a day
(at midnight). Then, the workload predictor runs once an hour,
for predicting the workload per minute in the next hour (i.e.,
60 points). Given the maximum predicted workload in next
hour and the current system status, resource reservation also
runs once per hour for reconfiguring the containers. We do
not update container configurations every minute due to its
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Fig. 3: Workload data series after processing with SSA. The
blue line represents the original data series which contains
a large number of noises, and the orange line represents the
processed data using SSA, which is smoother than before.
(Requests are collected by hours).

high cost. Finally, online controller continuously monitors the
SLO and activates the resource adjustment whenever a SLO
violation tends to occur.

B. Workload Predictor

1) Preprocessing: The production workload clearly shows
periodic patterns in Fig. 1. However, these patterns are often
unstable: Noises like weekend drop, incremental workload,
burst peaks make the traditional prediction methods (e.g.,
exponential smoothing, optimal fitting, etc.) do not work. To
address this challenge, we adopt the deep learning algorithm
and train a LSTM network model to precisely predict the
future workload.

Before the prediction, we process the historical workload
data using the SSA method to filter out the local short-
term noises. SSA [14] is commonly used to analyze one-
dimensional time series data. It constructs a trajectory matrix
according to the observed time series, and decompose it into
a sum of components (e.g., long-term trend signal, periodic
signal, noise signal) to analyze the structure of time series.
Fig. 3 shows the reconstructed workload series after SSA
processing, the processed data series is much smoother than
before.

2) Prediction model: As the workload always changes in
small-time granularity, single-point prediction generates fre-
quent resource reconfigurations, leading to high cost. Hence,
we instead predict multiple future points, for reducing the
possible reconfiguration cost. For predicting the future work-
load, the existing literature is generally divided into two
categories: statistical methods [15, 22] and machine learning
methods [17]. We do not choose statistical methods, because
they perform poorly for predicting multiple future points.
While statistical methods, like Holt-Winters, may show high
precision on single-point prediction, they predict the next
token conditioned on its previously predicted token, and the
approximation errors are iteratively accumulated.

Fig. 4 shows the prediction results by both LSTM and
Holt-Winters, and Fig. 5(a) shows the accumulated errors by
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Fig. 4: LSTM vs. Holt-Winters

them. We see that LSTM performs much better accuracy than
the latter with the prediction length increasing, so we choose
LSTM as the prediction method in our system.
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Fig. 5: Training the LSTM network model.

The structure of the LSTM leads to the significant difference
in the above comparison result. It can update parameters
automatically by propagated gradients and make a long-term
prediction by building loss function on the entire generated
workloads instead of every single one.
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Fig. 6: LSTM Structure

Fig. 6 illustrates the design of LSTM network: The left
shows a single LSTM block, which is trained recurrently by
states and input data. While the generated states of a block and
input data (i.e., w;) are fed into the next block, the next block
further computes an output and new states for the next. In
this way, sequential features in historical data are maintained.
Each state consists of two vectors: the block state vector ¢; and
the hidden state vector h;. They are fed into the next block to
initialize its corresponding states. Then, given the h outputs of
LSTM blocks, we leverage a MLP (Multi-Layer Perceptron)
network to generate k predictions denoting the £ continuous
workloads in the next period. That is, we have

(Whet1y - Whgk—1, Whak) = LSTM (w1, ..., wp—1,wp) (1)
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where w;, Vi € [1,..,h] is the historical workload at time i,
and wj, Vj € [h+1, .., h+k| denotes the predicted workload at
time j. For training the network, we record (h+ k) continuous
points by sliding time windows on raw workload data. The first
h points in each window are regarded as training data and the
rest are treated as target data. Upon obtaining the training data,
we use RMSE to measure the loss of predicted workloads and
actual ones as:

1 k
2D (e —wr)? )

t=1

arg min

where 6 denotes the parameters set in LSTM model, and p,
and wy are the predicted workloads and real value at time ¢
respectively. For solving (2), we update € using the common
SGD (Stochastic Gradient Descent) method.

In our experiments, we conduct nearly 200 experiments
to find the optimal parameter configurations with different
combinations of neural layers and iterations (Fig. 5(b)). We
finally get a well-trained LSTM model with 80 hidden layers
and 520 iterations and the total training time is less than 30
minutes.

C. Resource reservation
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Fig. 7: The resource-performance model.

1) Deriving the required resources: Given the predicted
workload, we construct a resource-performance model to
derive the amount of required resource. Fig. 7(a) shows the
actual CPU utilization under different workloads for redis.
Note that this analysis method can be applied in other online
services. The CPU utilization and the workloads obviously
have a non-linear relationship. We see that the CPU utilization
increases linearly at the beginning, followed by a steady state.
It means that increasing the CPU resources would improve the
performance at the beginning, but become ineffective after a
knee point. We denote the QPS (Query Per Second) at the knee
in this case as maxload. Since the CPU resource will not be
the performance bottleneck anymore after workload exceeds
mazxload, we can just allocate the maximum allowable re-
sources in case of > maxload, and a fine-grained resource
reconfiguration process would reduce the service cost only
when the actual workload is less than mazload.

Considering the case of < maxload, we fit a linear model
to describe the relationship between resource allocation and
workload (Fig. 7(b)):

R=oc-y+p 3)

where R represents the required resources, y denotes the
workload, o and ( are the coefficients of this linear model.

To improve the accuracy of model fitting, we detect and
remove outliers using the Nearest Neighbor approach: For
each data point, we compute its distance to the k-th nearest
neighbor. The points that have the largest distances are iden-
tified as outliers. After removing the outliers, we derive the
linear model that leads to the minimum euclidean distance to
sample points.

2) Scale up and scale out: Given the required resources
(denoted by R), it is a big challenge to derive the right
number of containers and their configurations based on the
existing container configurations and available physical ma-
chine resources because the “scale up” and “scale out” perform
significantly different operation cost. Starting a new container
involves the operations includes creating a container (Cercqte)s
adding the container into cluster (Cq4), configuring the load
balancer (Cgiance) and the forwarding cost (C'toryard) gen-
erated by cache miss due to the re-balancing mechanism in
the cluster. Hence, the operation cost of scale-out (Cscqieout)
is defined as follows:

Cscaleout = Ccreate + Cadd + Cbalance + Cforward (4)

On the other hand, the scale-up operation, i.e., updating
the configuration of a container, only involves the operation
cost on changing the number of CPU cores and memory that
allocated to the container. So we define the operation cost of
scale-up (Ciscaleup) as follows:

Cscaleup = Cepu + Cmemory (5)

where Ccp, and Chuemory represent the operation cost on
varying the CPU and memory configuration, respectively. Note
that the operation cost for scale-in and scale-down can be
derived in the same way, and in fact, they are the same as
the scale-out and scale-up operations.

In general, we prefer scaling-up the container cluster to
scaling-out operation for processing the increased workload,
because Cscateup < Cscaleout 18 usually established for scale-
out’s more operations than scale-up. However, it is not possible
to scale up resources unboundedly due to the limited capacity
of the physical machine. Moreover, the dominant resource may
change over the workload, and scaling up a container could
become useless after the workload reaches maxload.

Suppose the service cluster has n physical machines and
can hold at most m containers. Let y?, Vi € [1,..m] be the
resources initially allocated to container 7, and H;, Vj €
[1,..,n] be the maximum capacity of physical machine j.
Then, given the resource requirement R, the resource capacity
H;,Vj€l,..,n] and 32, Vi € [1,..n], our goal is to find the



new configurations for all containers: y;, Vi € [1,..n], so that
the overall operation costs are minimized:

C = Nscaleupcscaleup + Nscaleoutcscaleout (6)

where Ngcqieup denotes the number of containers whose
resource configuration is changed, and Ngcqieout denotes the
number of new container instances.
Besides the variable y;, we also define two other variables to
formalize the problem as a MINLP (Mixed Integer Nonlinear
Programming) problem:
e 1;;: a binary variable, which has the value “1” if container
1 is assigned to machine j. Otherwise, it is set to “0”.

e z;: a binary variable, denoting whether there is a change
on resource configuration for container . It has the value
“1” if y; # ). Otherwise, it is set to “0”.

Let x7; be the initial assignment of container 4. If 3, 27, =
0, it means container ¢ has not been created yet. Thus, we have,

Nscaleout = | Z Z Tij — Z Z m?j (7)

i=1j=1 i=1 j=1
Nscaleup = Z Zi (8)
i=1
Objective:
minimize : C 9)
> wiyi =R, (10)
i=1 j=1
> wiyy < Hj, Vel .. (11)
i=1
(1—z)(y; —y)) =0, Viell,.,m] (12)
(1—z)+ (i —yH)? >0, Vie[l,..,m] (13)
(1= wy)yi =0, Viel,.,m]  (14)
j=1
(1= @) +y: >0, Viel,.,m (15
j=1
day <1, Vie[l,.,m] (16)
j=0
zij 2 € {0,1}, Vi,Vj (17)
0<y; <7y, Viell,.,m] (18)

o Constraint (10) ensures that the required resources are
fully satisfied.

o Constraint (11) makes sure that the aggregated resources
allocated to containers deployed on a machine do not
exceed the capacity of the machine.

o Constraint (12), (13) together with constraint (17) make
sure that either z; = 1 if and only if y; # Y or z; = 0
if and only if y; = y?.

o Constraint (14), (15) together with constraint (17) make
sure that when container ¢ has been created, its configu-
ration y; should not be “0”. Otherwise, it is set to “0”.

« Constraint (16) enforces that each container can only be
deployed on at most one physical machine.
e Constraint (17) and (18) refer to the domain constraints.
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Fig. 8: The number of iterations and solution time required
for solving the MINLP.

We solve the above problem using LINGO and generate
the configuration updating plan based on the current config-
urations and the derived solution. Fig. 8 shows the number
of iterations and time for solving this MINLP. We see that
the number of iterations grows exponential over the number
of variables m * n 4+ m, and the solution time approaches to
100 seconds when the number of variables is 300. As the
container reconfiguration is activated once per hour, this cost
is acceptable.
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Fig. 9: When the workload increases from 150% to 350%, we
scale out two container instances and scale up the resources
of three existing containers from 50% to 70%.

Fig. 9 shows an example of the resource scaling process
of ElaX: machine A’s resource capacity is 160% and holds
two container instances, while machine B’s capacity is 300%
and there is only one container running on it at present.
Each container has a performance cap of 100%. When the
workload increases from 150% to 350%. The existing three
active containers cannot satisfy the new requirement because
the maximum capacity for them is only 260% (A can only
reach the 80% of their performance cap because A only has
160% resource capacity, and the capacities of all containers
are kept consistent for load balancing), so the cluster has to
be extended to five nodes: while we scale up the existing
three containers to 70% resources, we also scale out two new
containers.
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Fig. 10: Resource over-provisioning comparison of four methods (enabling only scale-up operation).
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Fig. 11: Tail latency CDF of four methods (SLO is set to 90th percentile latency < 500us in Redis, 650ms in e-commerce).

D. Online Controller

The inevitable prediction error by workload predictor pos-
sibly leads to SLO violations. Therefore, we further design an
online controller to adjust the resources at runtime according
to the SLO-violation feedback from performance monitoring.
It works as a daemon process and monitors the real-time
latency of long running service, when the service performance
declines or approaches a dangerous level, the resource reallo-
cation mechanism will be activated and protect the service
from violating the SLO.

The detailed control method is shown in Algorithm 1. We
denote SLO_Target as the latency target of long running
service, and it is set as the 90th percentile latency under
the maxload while with sufficient resource. By continuously
monitoring the tail latency performance in consecutive 30-
second windows, we derive a slack indicating the gap between
current latency and SLO. If slack < 0, it means the SLO has
been violated, and the system will allocate additional 0.1x re-
served resource for the service. If 0 < slack < 0.05, it means
the latency is closely approaching the SLO_Target and may

Algorithm 1: Online control algorithm

1 while True do
slack = (SLO_Target — latency)/SLO_Target;
if slack < 0 then
‘ increResource(curResource*0.1);
else if 0 < slack < 0.05 then
‘ increResource(curResource*0.05);
else
extraResource = cur Resource — preResource;
if extraResource > 0 then
L removeResource(extraResource*(.5);

E-EE- R B Y N ]

—
=

—
—

sleep(2s);

soon violate the SLO. In this case, we allocate 0.05x addi-
tional resource for preventing the possible violation of SLO.
Otherwise, the latency is still safe enough for guaranteeing the
SLO, we activate the recycling process, such that the over-
allocated resources are recycled for other services. In lines 8-
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10, we first derive the over-allocated resources (extraResource)
using the currently allocated resources (curResource) and the
predicted resources (preResource). Then, we recycle half of
the over-allocated resource each time to reduce the waste.

IV. PERFORMANCE EVALUATION
A. Experiment Setup

1) Services: We deployed two online services e-commerce
website and redis, considering their representativeness in ser-
vice architecture and response time:

o E-commerce adopts the multi-tier architecture and usually
responds in milliseconds. We use the TPC-W [24] as the
transactional web e-commerce benchmark.

e Redis is an in-memory data structure store and is used as
a database, cache and message broker. It adopts the fan-
out architecture and usually responds in microseconds.

2) Workloads: We simulate the access workload towards
the two services using production workload from ClarkNet
and Calgary trace [18], by comparing ElaX with EFRA, PRESS
and Peak methods, we evaluate the efficiency using resource
utilization and 90th percentile latency.

3) System environment: We deploy the redis cluster with 22
service nodes and the e-commerce cluster with 20 nodes across
four servers, and each container is initially allocated with 1
CPU cores and 2GB RAM. Clients are deployed in another
server to avoid resource contention with service nodes. Each
server is configured with 40 cores of 2.0 GHz Intel Xeon E7-
4820 v4 and 128GB of DRAM. We use the operating system
of Ubuntu 14.04 and the docker engine 18.03. All servers are
connected to a 1000 Mbps switch. After deploying ElaX on
this system, we measure that its average CPU utilization is
< 5% and memory utilization is < 400M B.

B. Results

1) Scale-up: Since the compared algorithms can only sup-
port scale-up operation, we evaluate ElaX by only enabling
the scale-up operation at first.

Resource provision: Fig. 10 shows the allocated resources by
the four algorithms. We only show the CPU resource here,
but it can be extended to other resources easily. In the case of
redis (Fig. 10(a)-Fig. 10(c)), although PRESS always utilizes
the least resources (even less than the actual demand), it leads
to very high tail latency and cannot guarantee the tail latency
SLO (Fig. 11). Among ElaX, Peak, EFRA and No-scaling, we
find that, No scaling wastes the largest amount of CPU (by an
average of 141%) because of the fluctuating CPU demands of
the workload. Peak can dynamically allocate CPU resource for
the varying workloads, but it also causes a significant waste
of 46% resources, since its conservative approach that uses
worst-case peak demand as the predicted workload in next
period. The over-provisioning cost by EFRA is around 34%,
which is much less than No Scaling and Peak. However, it also
exceeds 70% in the first period, since its prediction does not
work well in unstable periodic workload. ElaX performs much
better than the former algorithms, and its over-provisioning

cost is generally less than 10% because of its high prediction
accuracy.

In case of e-commerce, Fig. 10(d)-Fig. 10(f) shows the

similar results. While No-scaling, Peak and EFRA averagely
generate over-provisioning cost of 200.3%, and 29.6%, re-
spectively, our ElaX only generates less than 18% of over-
provisioning cost.
Tail latency: The tail latency SLO of online service must be
guaranteed while allocating the resource elastically. Fig. 11
shows the CDF (Cumulative Distribution Function) of latency
by four algorithms: Peak, EFRA, PRESS and ElaX. We set
the tail latency SLO as the 90th percentile latency under the
maxload while allocated with sufficient resources, which are
500us and 650ms for redis and e-commerce, respectively. We
find that PRESS cannot guarantee the SLO in all cases: its
90th percentile latency for redis under Calgary and ClarkNet
trace are 681us and 569us, respectively, and for e-commerce
under Calgary and ClarkNet trace are 1114ms and 967ms,
respectively. On the other hand, Peak and EFRA can guarantee
the SLO because of its over-provisioned resources, and ElaX
can guarantee the SLO because of its high prediction precision
and online control mechanism.
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Fig. 12: System Throughput (scale-up).

Throughput: ElaX provides a highly precise prediction on
workload and the amount of required resources. However,
when we actually allocate the corresponding amount of re-
sources, the actual system throughput (i.e., QPS) is slightly
decreased. Fig. 12 shows the system throughput generated by
the four methods. We see that Peak, EFRA, ElaX decrease
the throughput by an average of 0.52%, 0.81% and 0.69%,
respectively, all of them are less than 1%. The instability of
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the system may lead to fluctuations in QPS, so we suggest
allocating slight more resources for the online service after
we get the resource allocation using the resource-performance
model. For PRESS, it cannot guarantee the throughput in all
experimental groups.

2) Scale-up and scale-out: We change the system configu-
rations by constraining the maximum usable capacity of two
containers to 60% of its original capacity, that is, resulting in
a heterogeneous system. We run ElaX on the heterogeneous
system, and enable both scale-up and scale-out operations. We
compare ElaX only with EFRA because EFRA performs the
best among the other algorithms.

Resource provision: Fig. 13(a) shows allocated CPU re-
sources by EFRA and ElaX. We see that the workload increases
by almost 0.5% from the first time window to second window,
EFRA can only provision resource by scale-up/down and
cannot guarantee the increased workload in second timespan,
while ElaX can continually provide resource for the workload
using scale-up/out. The top figure in Fig. 13(b) shows the
resource over-provisioning cost by ElaX over time. We see
that the over-provisioning cost is rather high at the beginning,
but it declines quickly due to the continuous reconfigurations.
The average CPU over-provisioning cost is about 11.4%. For
the system throughput, the bottom figure in Fig. 13(b) shows
that ElaX can achieve comparable throughput as the No-
scaling while EFRA reduces the throughput by around 12%.
The limitation of EFRA leads to the lower throughput in this
heterogeneous system.

Tail latency: Fig. 13(c) and Fig.13(d) show the tail latency

generated by both ElaX and EFRA. We see that ElaX can
guarantee the SLO with a 90th latency of 442us. In case of
EFRA, its 90th percentile latency even exceeds 30ms, which
is much larger than the SLO target, thus it cannot guarantee
the tail latency SLO under unstable periodic workload.
Resource recycling: We also present the efficiency of resource
recycling mechanism of ElaX. Fig. 14 shows the timeline of
the resource re-provisioning process in our experiment. We
see that, the re-provisioning mechanism is triggered for five
times, and is followed by five times of recycling.

When ElaX detects that the current tail latency will soon
approach SLO (i.e., slack < 0.05), it allocates additional
5% more resources. If SLO has been violated, it allocates
additional 10% more resources to guarantee SLO. After the
allocation of additional resources, the recycling algorithm
recycles extra resources in a bisection way if the SLO is
recovered. We highlight the amount of recycled resources in
Fig. 14(a), and find that the recycling mechanism recycles 79%
of resources averagely during this time (Fig. 14(b)).

V. RELATED WORK

Cloud management framework: Many cloud resource
management systems, such as Yarn [32], Borg [33], Omega
[29], Mesos [16], have been proposed to improve the resource
efficiency of cloud systems. However, they never focus on
the long-running online services, and do not provide the
efficient resource allocation for online services. Kubernetes [2]
supports both scale-out and scale-up operations by the HPA
and VPA techniques, according to the feedback from latency
monitoring. However, as the online service’s workload often
shows periodic patterns, it is possible to further reduce the pro-
visioning cost through workload-aware resource allocations.

Resource allocation: There has been some work support-
ing workload-aware resource allocation for batch work to
achieve the SLO effect without over-provisioning. Morpheus
[20] is able to automatically allocate resources learning from
historical resource usage. TetriSched [31] estimates the job
runtime for planning ahead for a busty preferred resource type.
Quasar [7] increases resource utilization through a prediction
on interference between applications. HCloud [8], a hybrid
provisioning system that uses both reserved and on-demand
resources in a combined way for reducing the service cost.
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However, there is still a lack of study on the access load
pattern of the online service, for further reducing the resource
provisioning cost.

Long-term online service: For long-running services,
PRESS [12] extracts fine-grained dynamic patterns from ap-
plication resource requirements and automatically adjusts the
allocation of their resources. CloudScale [30] uses an online
resource demand forecasting scheme to achieve adaptive re-
source allocation. However, due to under-estimation, PRESS
and CloudScale cannot strictly guarantee the tail latency SLO.
AGILE [25] dynamically adjusts the number of VMs allocated
to cloud applications to keep up with load changes. However,
starting or stopping a VM (or server) usually takes a few
minutes, and these methods are not sufficient to effectively
cope with the uncertain needs of long-term operation, espe-
cially for online services [1]. EFRA [4] supports the fine-
grained resource allocation with a workload-aware allocation
mechanism, but their workload prediction is highly inaccurate
in the very common unstable periodic workload scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design an elastic resource provisioning
framework: ElaX, which can dynamically adjust the resource
allocation for periodical workload while guarantee tail latency
SLO for online service. ElaX can precisely predict the complex
workload variations, and scale the resources efficiently using
both scale-up and scale-out operations in a combined way.
Experiment results demonstrate the efficiency of ElaX. In the
future, we would like to further improve the resource efficiency
employing the hardware and software interference isolation
techniques.
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