
Flame: A Centralized Cache Controller for Serverless Computing
Yanan Yang

College of Intelligence & Computing
(CIC), Tianjin University, Tianjin Key

Lab. of Advanced Networking
(TANKLAB)
Tianjin, China

ynyang@tju.edu.cn

Laiping Zhao∗
CIC, Tianjin University, TANKLAB

Tianjin, China
laiping@tju.edu.cn

Yiming Li
CIC, Tianjin University, TANKLAB

Tianjin, China
l_ym@tju.edu.cn

Shihao Wu
CIC, Tianjin University, TANKLAB

Tianjin, China
lechou@tju.edu.cn

Yuechan Hao
Huawei Cloud Computing
Technologies Co., Ltd.

Shenzhen, China
haoyuechan@huawei.com

Yuchi Ma
Huawei Cloud Computing
Technologies Co., Ltd.

Shenzhen, China
mayuchi1@huawei.com

Keqiu Li
CIC, Tianjin University, TANKLAB

Tianjin, China
keqiu@tju.edu.cn

ABSTRACT
Caching function is a promising way to mitigate coldstart overhead
in serverless computing. However, as caching also increases the
resource cost significantly, how to make caching decisions is still
challenging. We find that the prior “local cache control" designs are
insufficient to achieve high cache efficiency due to the workload
skewness across servers.

In this paper, inspired by the idea of software defined network
management, we propose Flame, an efficient cache system to man-
age cached functions with a “centralized cache control" design. By
decoupling the cache control plane from local servers and setting
up a separate centralized controller, Flame is able to make caching
decisions considering a global view of cluster status, enabling the op-
timized cache-hit ratio and resource efficiency. We evaluate Flame
with real-world workloads and the evaluation results show that
it can reduce the cache resource usage by 36% on average while
improving the coldstart ratio by nearly 7× than the state-of-the-art
method.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

∗Corresponding author: laiping@tju.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0394-2/23/03. . . $15.00
https://doi.org/10.1145/3623278.3624769

KEYWORDS
Serverless Computing, Keep-alive, Hotspot Function, Coldstart

ACM Reference Format:
Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma,
and Keqiu Li. 2023. Flame: A Centralized Cache Controller for Serverless
Computing. In 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 4 (ASPLOS ’23),
March 25–29, 2023, Vancouver, BC, Canada. ACM, San Diego, USA, 16 pages.
https://doi.org/10.1145/3623278.3624769

1 INTRODUCTION
Serverless computing provides a stateless programming model for
cloud users, which allows developers to construct their services as
only a set of event-triggered functions without considering resource
provision and management (e.g., autoscaling). Due to the stateless
nature of serverless functions, user requests suffer from a coldstart
problem (i.e., launching containers from scratch for functions that
are not used frequently). In a coldstart scenario, the startup time of
execution environment initialization can be orders of magnitude
higher than the function execution time [11], making this one of
the central performance problems in serverless computing [8, 21,
27, 29].

Generally, the coldstart overhead can be mitigated through two
approaches: startup acceleration and function caching. Startup accel-
erating methods attempt to reduce the function initialization time
by trimming the sandbox loading process, e.g., by snapshotting [3],
state reuse [2, 6, 14, 21], or lightweight virtualization [1, 12, 19].
While these mechanisms can reduce the virtual environment cre-
ation time significantly (e.g., to < 2 ms in Catalyzer [6]), the user-
side overhead remains; e.g., resetting application variables and
configuration files can take hundreds of milliseconds [28], and the
resulting coldstart time is still unacceptable for latency-critical ser-
vices. The function caching methods seek to invoke functions in a
“warmstart" form. By caching finished functions (e.g., via Docker

153

https://doi.org/10.1145/3623278.3624769
https://doi.org/10.1145/3623278.3624769
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623278.3624769&domain=pdf&date_stamp=2024-02-07


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

W
orkload

cache 

S0

(a) Local Cache Control

S1 Sn... ...

Centralized Cache Controller

Eviction
Scheduling

(b) Centralized Cache Control

Skewness Skewness

S0 S1 Sn

Used Hotspot func.Redundancy

Figure 1: An overview of different cache management meth-
ods.

pause [23]) instead of reclaiming them immediately, the subse-
quent requests can reuse them with almost no coldstart overhead.
It takes < 0.5ms to recover a paused container [30]. As serverless
mainly attracts short running tasks [26, 36], function cache is a
more promising way to eliminate coldstart.

However, caching function instances consumes resources on
physical servers, thus increasing the cost of serverless platforms.
For example, our platform, one of the China’s largest cloud provider,
consumes more than 20% of memory resource in serverless cluster
for keeping functions alive under a < 1% of coldstart ratio. Worse,
it is almost impossible to cache all functions due to limited server
resources and varied workloads. To improve the cache efficiency,
serverless platforms commonly launch a local controller in every
physical server, which manages the creation and destruction of
cached instances using TTL (Time-to-live)-based keep-alive policies
[17, 22] or priority-based caching policies [8, 9].

Unfortunately, we find that the “local cache control" design (i.e.,
making caching decisions based on only a local view of invocations)
is far from achieving high cache efficiency due to the skewed invo-
cations across servers (Figure 1(a)). An analysis of Azure’s function
trace [27] shows that 90% of invocations are sent to only 10% of
hotspot functions. Hence, servers deployed with hot functions may
not have sufficient resources for caching, whereas servers deployed
with cold functions may cache some instances that are seldom
called. The lack of a global view of the distributions of hot and cold
functions makes it difficult for the controller to make optimal cache
decisions. Our analysis shows that > 50% of cached instances are
seldom invoked due to the suboptimal cache decisions made by
local controllers. In contrast, the contention among hotspot func-
tions in some servers can lead to 38% of coldstart ratio fluctuations,
degrading both resource efficiency and performance.

In this paper, inspired by the idea of software defined network
management [7, 32], we argue for a globally “centralized cache
control" (Figure 1(b)) for managing caching in a serverless cluster.
By decoupling the cache control plane from local servers and setting
up a separate centralized controller, caching decisions can be made
from a global perspective of cluster status, enabling an optimized
cache-hit ratio and resource efficiency.

The “centralized cache control" design poses several challenges
for a serverless system. First, the cache controller should answer
the “3W" questions: (1) Which function instances should be cached?
(2) Where should the function instances be cached? (3) When can the
cached instances be released? The high volatility of the request load
and resource consumption of different functions make it difficult
to solve these problems. Second, the centralized controller strongly

relies on support from monitoring, centralized storage and com-
munication protocols. Integrating the controller into a serverless
system with minimum overhead is also a challenge.

To overcome these challenges, we propose Flame, the first cen-
tralized caching manager for serverless clusters. Flame consists of
a top controller and multiple agents (named Cachelet). In partic-
ular, each server is deployed with a Cachelet, which collects the
local status information, sends it to the top controller and executes
its cache decisions. Flame introduces a concept of “hotspot" for
both functions and servers, which is used to describe the func-
tion popularity and server load pressure, respectively. To avoid
the intra-server hotspot contentions, the top controller adopts an
exponentially decaying algorithm to dynamically identify the global
hotspot functions and schedules them with the minimum hotspot
aggregation principle for caching. In each server, Flame uses a
hybrid caching policy to manage the cached functions. Hotspot
functions are cached in the protected memory space for achieving
better performance, while the non-hotspot functions are cached
in the temporary memory space using a “best-effort" way to uti-
lize server’s idle resources, thus to maximize the cache benefit.
Flame also designs an adaptive reclamation algorithm to detect
cache redundancy of hotspot functions, thus improving their cache
efficiency.

We implement Flame on OpenFaaS [22], a popular open-source
serverless framework built upon Kubernetes [16] natively. It can
achieve more than 99.1% of warm invocation ratio in serverless
cluster. We use real-world applications from ServerlessBench [35]
and FunctionBench [13] under Azure’s production traces to evaluate
Flame’s cache efficiency. The evaluation result shows that it can
reduce the cache resource usage by 36% on average while improving
the coldstart ratio by nearly 7× than the existing local cache control
methods.
Contributions. We highlight the contributions of this paper as
follows:

• Problem. An analysis of the low efficiency of the local cache
controller due to the skewed invocations.
• Flame. A centralized cache controller for managing the
caching of serverless functions, which resolves cache redun-
dancy and hotspot contention problem using a cluster-level
hotspot-aware caching policy.
• Evaluation. A full-system implementation on OpenFaaS
and evaluations on real-world applications to demonstrate
the high cache efficiency of Flame.

2 MOTIVATION
The stateless nature of serverless functions allows the platform to
automatically adjust the number of function instances with work-
load changes. Typically, a serverless cluster contains hundreds of
servers, serving tens of millions of requests from thousands of func-
tions. Each function is running inside a container such as Docker
[33] or a lightweight virtual machine such as Firecracker [1]. By
simply pulling the user code and dependency files, these stateless
functions can be easily extended to different servers. For each de-
ployed function, the gateway receives user requests and forwards
them to servers with available function instances for processing.
When a function instance finishes execution, it will be cached on

154



Flame: A Centralized Cache Controller for Serverless Computing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0.01%0.1% 1% 10% 100%
Percent. of Hotspot Functions/Apps

0

0.25

0.5

0.75

1.0

C
D

F 
of

 In
vo

ca
tio

ns

Functions
Applications

(a) Function call distribution
se

rve
r 1

se
rve

r 2

se
rve

r 3

se
rve

r 4

se
rve

r 5

se
rve

r 6

se
rve

r 7

se
rve

r 8
0

25

50

75

100

M
em

or
y 

U
til

. /
 L

oa
d 

(%
)

Server Load
Memory Util.

0

2

4

6

C
ol

ds
ta

rt 
R

at
io

 (%
)

Coldstart ratio

(b) Hotspot contention

tra
ce

 a

tra
ce

 b

tra
ce

 c

tra
ce

 d

tra
ce

 e
tra

ce
 f

tra
ce

 g

tra
ce

 h
0

2

4

6

8

M
em

or
y 

U
til

iz
at

io
n

(N
or

m
al

iz
ed

)

Consistent Hashing
Round-Robin

0

2

4

6

C
ol

ds
ta

rt 
R

at
io

 (%
)

Coldstart ratio

(c) Low resource efficiency

0 90 240 360180 

Functions

100

101

102

103

104

105

M
em

or
y 

U
sa

ge
 (M

B·
s)

100

102

104

106

# 
of

 In
vo

ca
tio

ns

Mem. Usage 
# of Invoc.

Top 95% of invocations

(d) Cache redundancy

Figure 2: (a) Function call distribution of the Azure trace. (b) Hotspot contentions in local cache control. (c) Cache memory
usage under different workload distributions in local control. (4) Cache redundancy in local cache control.

the local server rather than being released immediately; thus, sub-
sequent requests can reuse it with near-zero coldstart latency.

As hotspot functions are widely common in serverless scenarios,
this makes the workload skewness become a common phenome-
non in serverless platforms. For example, as shown in Figure 2(a),
more than 90% of the requests in Azure’s function trace come from
approximately 10% of hotspot functions. When multiple hotspot
functions are colocated on several local servers, their system pres-
sure can dramatically increase and lead to workload skewness in
the cluster. Additionally, load-balancing rules such as consistent
hashing, prefer to forward a function’s requests to the last accessed
servers, and “server lock-in" can also result in many skewed in-
vocations for hotspot functions. In the following, we give several
observations to explain why local cache control in existing server-
less platforms is insufficient to achieve high cache efficiency due to
workload skewness.

2.1 Limitations of Local Cache Control
We implement FaasCache, which is a state-of-the-art local cache
control method [8], on an 8-server serverless cluster. Each server in
the cluster is configured with 128 GB memory. To evaluate the per-
formance of FaasCache, we deploy several real-world applications
and conduct experiments following the workload characteristics
in Azure’s function traces. Additionally, we employ two different
load dispatchers (consistent hashing and round-robin) to observe
the caching behaviors in the cluster.
Observation #1: Hotspot contentions: Local cache control is unable
to handle workload skewness in serverless cluster. Hotspot contention
can result in 100× of function performance difference across servers.

Figure 2(b) shows the server load, memory utilization and cold-
start ratio in each server under the hashing-based load-balancing
rule, where the server load represents the fraction of processed
requests in the whole workload trace. We see that server 8 has the
highest server load and memory usage ratio since more than 50%
of hotspot function invocations are dispatched to it for processing,
while server 3 only processes approximately 20% of total requests
from hotspot functions. Due to a lack of resource pooling ability
in local cache control, the resource contention between colocated
hotspot functions on server 8 is more serious in the cluster, which
increases its coldstart ratio by 100× higher than the other servers
(4.7% on server 8 and 0.04% on server 3).

Eliminating workload skewness can improve system efficiency
of the local cache control method. As shown in Figure 2(c), when
the load-balancing rule switches from consistent hashing to round-
robin, the hotspot functions are more likely to be evenly distributed
on multiple servers, and the performance bottleneck on the local
server can be eliminated (e.g., server 8). However, compared to
the hashing-based load-balancing rule, the round-robin-based rule
violates the locality and reduces the hit ratio for the cached function
instances, which causes more than 3× greater cache resource usage.
Additionally, hotspot functions show high temporal dynamism, and
the local cache control method has difficulty in capturing workload
behavior changes and leads to oscillations in local cache decisions,
leading to a high coldstart ratio in the cluster (1.8% to 3.9% across
different servers).
Observation #2: Cache redundancy: Local cache control causes sig-
nificant cache redundancy with more than 75% of cache resource
wasted in the cluster.

Local cache control makes cache decisions independently at each
server. For each cached function, its instances may be redundantly
saved on multiple servers, causing cache resource waste. Mean-
while, lacking a global view of workload behaviors makes local
cache control unable to identify cluster-level hotspot functions,
thus making incorrect cache decisions, e.g., consuming a large
amount of resources to cache cold functions. To analyze cache re-
dundancy in local cache control, we collect the memory usage from
384 real functions during one day’s invocations in an experiment.
The memory usage for each serverless function consists of the
memory for caching its instances and consumption on executing
requests.

Figure 2(d) shows the details, where the functions are sorted by
the number of invocations in descending order. We see that the
top-20 hotspot functions account for nearly 95% of invocations.
However, they only take less than 20% of memory usage over all
total 384 functions. We also calculate the memory usage for execut-
ing requests for the remaining 365 functions and find that they only
take approximately 5% of the total memory usage, which means
that more than 75% of the resources are consumed by caching non-
hotspot functions in the cluster, although they are seldom invoked
during the cache time. We also observe that many cached instances
of the non-hotspot functions have low resource utilization (from
10% to 30%). If the caching system can identify the over-provisioned
function instances and reclaim them with workload changes, the

155



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

cache redundancy can be significantly reduced to achieve better
resource efficiency.

2.2 Implications
The above observations motivate us to design a centralized cache
system to improve cache efficiency in serverless clusters. To over-
come the shortcomings of local cache control, a caching system
should be able to manage cluster resources from a global cache
scheduling design to avoid a single-server performance bottleneck.
When scheduling cached functions, hotspot functions should not
be colocated together to avoid hotspot contention (Observation
1). Additionally, the caching decisions for each cached function
should adaptively tune with workload and server status changes,
and the cache system should be able to detect cache redundancy,
thus improving cache resource efficiency (Observation 2). Finally,
the system architecture design should be lightweight and extensible
to reduce system overhead and decision complexity.

3 FLAME DESIGN
Figure 3 presents our cache system design. Flame adopts a two-layer
controller design to implement centralized cache management and
works as a back-end module in a serverless platform. It consists of a
globalCacheManager andmultipleCachelets running on each server.
The global CacheManager interacts with the underlying Cachelets
and periodically collects the cluster-level information (e.g., server
status and workload behaviors) to make cache decisions. When a
user request arrives, the front-end dispatcher will dispatch it to
the server with the cached instance, if any. Otherwise, the cache
scheduling algorithm in CacheManager is triggered under acache-
miss. It selects a server with the lowest hotspot contention and
launches a new function instance to process user request. Once
the function instance finishes execution, the Cachelet caches it in
memory and manages its lifetime following the CacheManager’s
instructions.

When Flame is deployed in a serverless cluster, its launching and
operating takes two steps: function registration and cache manage-
ment. (1) Function registration: For each deployed function, Flame
first collects its metadata information and registers the function
in a cluster-provided database. The metadata information includes
the function ID, image name and memory usage, which is used in
Flame’s cache allocation and recycling. The function registration
is simple and is done only once for each new deployed function.
(2) Cache management: The cache management of Flame works
on two planes. The control plane, via the global CacheManager,
determines whether a function needs to be cached, where it should
be scheduled, and how long it should be cached in a back-end server.
The cache plane, which includes the cached function instances and
functional components such as Cachelet and gateway, dispatches
and executes user requests.

Flame adopts a hotspot-aware caching and scheduling design
to address the 3W questions. At the control plane, the CacheMan-
ager maintains a global hotspot function list and designs a dynamic
hotspot detection mechanism to identify the cluster-level hotspot
functions (§ 4.1). To avoid hotspot contentions, it also introduces a
hotspot concept for each server, which is used to describe their load

Global Cache Manager

Calculate hot-score 
in each node

Check server 
available resources

Determine function 
cache placement

Hotspot-aware scheduling

Workload
Status

FaaS Gateway

Front-end

Cachelet

Protected 
Space

Temporary
Space

Lifecycle Manager

Cluster stats 
synchronization 

Function
Metadata

Function invocations

Hotspot Function 
Detection

Data flow Control flow

Cachelet
Protected
Space

Temporary
Space

Lifecycle Manager

Cluster stats 
synchronization 

...

Figure 3: System architecture of Flame.

pressures. When a hotspot function needs to be cached, the Cache-
Manager calculates the hot-score on each server and schedules a
cached instance based on a minimum hotspot aggregation principle,
which can balance both the server load and cache hit ratio (§ 4.2).

As the available cache resources in a server are limited and can
vary with workload changes, Flame adopts a hybrid caching pol-
icy to improve cache resource efficiency. At the cache plane, the
Cachelet synchronizes the global hotspot function list and periodi-
cally updates it from the CacheManager. When a hotspot function
instance is scheduled on a server, it will be cached in a protected
memory space after invocation, thus receiving a high cache benefit.
While the non-hotspot functions are cached in a temporary memory
space in a best-effort manner (i.e., using a TTL-based keep-alive
policy but can be evicted at any time) to utilize a server’s idle cache
resources. There are two advantages to this hybrid caching strategy.
First, it can maximize function performance by reducing coldstart
invocations caused by second-class citizen phenomena (i.e., the
non-hotpot functions suffer from a high coldstart ratio due to re-
source preemption from hotspot functions). Second, it can improve
system robustness and mitigate function performance fluctuations
due to hotspot detection delay and errors.

To reduce cache redundancy, Flame also designs an adaptive
cache reclamation algorithm to dynamically monitor the cache
reuse rate of hotspot functions and reclaim the over-provisioned
instances, thus reducing the cache resource waste (§ 4.3).

4 HOTSPOT-AWARE CACHE SCHEDULING
We now introduce the three key modules of Flame, dynamic hotspot
detection, hotspot-aware instance scheduling and cache resource al-
location, and explain how these mechanisms can solve the 3W
questions.

4.1 Dynamic Hotspot Detection
The dynamic hotspot detection mechanism is used to identify the
global hotspot functions in serverless cluster. Inspired by Java Vir-
tual Machine (JVM) [4], the CacheManager uses an invocation
counter to record the number of invocations for each serverless
function. Records collected from each server are aggregated to de-
rive function-level hot-scores. Since serverless computing is widely

156



Flame: A Centralized Cache Controller for Serverless Computing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

used in interactive services, such as web services and machine
learning, the workload behaviors of these functions are varying
over time. The CacheManager dynamically records the number of
invocations for each function within a configurable duration (e.g.,
1 hour). When a new duration starts, the function invocation coun-
ters from the last duration are stored and a new invocation counter
is created.

The function’s hot-score is calculated with an exponentially de-
caying algorithm [5], which can help Flame learn the workload
characteristics from historical durations and avoid the hotspot func-
tion detection oscillations caused by short-term workload bursts.
The hot-score for each function is defined as:

𝐻𝑖 =

𝑇∑︁
𝑗=1

21− 𝑗𝑐𝑖 [ 𝑗]

where 𝑐𝑖 ( 𝑗) represents the 𝑗th invocation counter of function 𝑖

and 𝑇 is the total number of historical invocation counters. Given
a collection of function hot-scores {𝐻𝑖 |𝑖 = 1, 2, ...,𝑚}, where𝑚 is
the number of deployed functions. We sort the function hot-scores
in descending order and define the top 𝑁 functions as the hotspot
functions, which meet the constraint

∑𝑁
𝑖=1 𝐻𝑖 ≥ 𝑟 ·∑𝑚

𝑖=1 𝐻𝑖 , where
𝑟 is a threshold named region size from 0 to 1. A larger (or smaller)
region size means more (or fewer) of the most popular functions
are classified as hotspot functions. As the setting of region size can
affect the cache efficiency in Flame’s cache control, we conduct a
lot of experiments to find the optimal region size setting and finally
set it to 0.5 in our system design (discussed in § 6.2).

4.2 Hotspot-aware Instance Scheduling
The hotspot-aware instance scheduling mechanism is used to deter-
mine the instance placement for cached hotspot functions while
avoiding hotspot contentions on the local server. The basic idea of
the scheduling algorithm is trying to spread cached hotspot functions
across the servers with the minimum hotspot aggregation principle.
To achieve this goal, we also introduce the concept of hotspot for
back-end servers to describe their load pressure, which is defined as
the aggregated hotspot score of all hotspot functions cached on one
server.. When a function scheduling occurs under a coldstart invo-
cation, the CacheManager collects the available cache resources in
each server and calculates their hot-scores to determine the cache
placement. Note that the server status information is collected us-
ing a periodic synchronization mechanism (every 5 s) between the
CacheManager and Cachelets, thus reducing the communication
delay. Flame also supports forced synchronization to address the
issue of data inconsistency.

Algorithm 1 shows the details. In the serverless cluster, a func-
tion’s resource requirements can be represented as a multidimen-
sional vector, including the CPU, memory and I/O requirements.
Let 𝑅 be the resource requirement of a newly launched function
instance; the available resources of the physical servers can be
represented as a collection S. Similarly, the functions’ hot-scores
and the resource consumption of the deployed functions can be
defined as H and M , respectively. The scheduling algorithm reads
them as inputs and outputs the target server for the newly launched
function instance in the cluster.

Algorithm 1: Schedule(𝑅, S,H ,M)
Input:
𝑅 ⊲ The resource requirement of the newly launched function

instance;
S ⊲ The available resources of servers;
H ⊲ The hot-score collection of the deployed functions;
M ⊲ The resource consumption of the deployed functions;

Output:
𝑠𝑒𝑟𝑣𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ⊲ The placement of the newly launched instance;

1 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 0;
2 𝑠𝑒𝑟𝑣𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ← −1;
3 for 𝑆𝑘 ∈ S do
4 ⟨ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 , 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 ⟩ ← GetHotScore(𝑆𝑘 ,H ,M ) ;

// Calculate the aggregated function hot-score and
the available resource in server 𝑘

5 if 𝑅 ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 then
6 if ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 >𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 then
7 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 ;
8 𝑠𝑒𝑟𝑣𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ← 𝑘 ; // Find a server to

schedule new instance

9 return 𝑠𝑒𝑟𝑣𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ;
10 Function GetHotScore(𝑆𝑘 ,H,M):
11 ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 ← 0; 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 ← 0;
12 Initialize 𝐹𝑘 , 𝐼𝑘 as the cached functions and instances in

server 𝑘 ;
13 for 𝐹𝑘𝑖 ∈ 𝐹𝑘 do
14 if 𝐼𝑘𝑖 ≠ [ ] then
15 if isHotspot(𝐹𝑘𝑖 ) then
16 ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 ← ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 +𝐻𝑖 ;
17 else
18 for 𝐼𝑘𝑖 ∈ 𝐼𝑘 do
19 if isIdle(𝐼𝑘𝑖 ) then
20 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 ← 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 +𝑀𝑖 ;

21 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 ← 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 + 𝑆𝑘 ; // Update the available
resources in the server

22 if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 > 0 then
23 if ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 == 0 then
24 ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 ← 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘/0.001;
25 else
26 ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 ← 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘/ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 ;

// Calculate the weighted score

27 return ⟨ℎ𝑜𝑡_𝑠𝑐𝑜𝑟𝑒𝑘 , 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑘 ⟩;

In the scheduling process, the algorithm iterates the servers in
the cluster and calculates their aggregated hot-scores and available
resources by invoking the GetHotScore() module (Lines 3-4). If the
resource requirement of the newly launched instance can be met,
the container will be scheduled in the server with the minimum
aggregated hot-score (Lines 5-8). Lines 10-27 show the details of
the GetHotScore() function. The algorithm first initializes 𝐹𝑘 and 𝐼𝑘
as the cached function list and instance list in each server, respec-
tively. Note that the subscript represents the index of the server. For
each registered hotspot function on server 𝑘 , its hot-score will be
accumulated if it has more than one cached instance on this server
(Lines 13-16); otherwise, this hotspot function will be skipped be-
cause it has no instances to compete for cache resources with the
newly launched instance.

The available server resources consist of unused physical re-
sources and evictable resources in the temporary memory space.
For each non-hotspot function in server 𝑘 , the resource consump-
tion of its idle instances will be accumulated into the available
resources in the server since the idle containers can be evicted
forcibly when caching new function instances (Lines 17-21). Insuf-
ficient server resources or high workload pressures from hotspot

157



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

Nonhotspot Func. 
Creating

Release/Eviction

Hotspot update

Hotspot Function 
Creating

Servers

Temporary 
Space

Protected 
Space

Unused 
Space

Unused Space 

Temp. Space

Protected Space
..

R
es

er
ve

d 
sp

ac
e

(a) Memory partitions (b) Lifecycle switch of cached functions

Figure 4: Cache allocation in Cachelet.

functions will lead to intra-server performance bottleneck. To ad-
dress this problem, we define a server’s scheduling priority as the
ratio of its available resources and its aggregated hot-score (Lines
22-26). Servers with more free resources and fewer hotspot func-
tions are preferred to schedule new function instances, which can
help mitigate hotspot function contentions in a serverless cluster.

Note that the current Flame is designed to spread out hotspot
functions across multiple servers. When the function workload is
low, a separate cluster autoscaler (CA), which is common at cloud
provider, can be activated to downsize the cluster through shut-
ting down excessive servers. It is certainly possible to integrate
Flame with CA together to make it support workload consolidation
when placing cached function instances, thus reducing the cloud
provider’s cost. Additionally, since the number of cached containers
is mainly limited by a server’s physical memory capacity, we con-
sider only the memory constraint in current function scheduling
algorithm. Our algorithm can also be extended to other resources,
such as CPUs and networks.

4.3 Resource Allocation for Caching
On each server, the cache resource allocation for each function
is managed by the Cachelet. When a new function is scheduled,
the Cachelet launches the function instance and caches it based on
the hybrid caching policy. For each cached function instance, the
Cachelet also monitors their lifetimes and releases (or evicts) them
to reclaim the server’s cache resources. We now introduce the the
cache resource management in Cachelet.

4.3.1 Protected/Temporary Memory Partitions. To implement the
hybrid caching policy between hotspot functions and non-hotspot
functions, we partition the memory resources of each server into
two spaces: a protected space and a temporary space (Figure 4 (a)).
The hotspot functions are cached in the protected space, where
instances have no lifetime limitation and cannot be evicted by
resource contentions (e.g., creating new function instances). The
non-hotspot functions are cached in the temporary space. Once
an instance has finished execution, it will be kept in memory and
released automatically after a keep-alive time length (discussed in
§ 6.2). The idle instances in the temporary space can be evicted by
force when there is no sufficient resources to launch new function
instances.

Note that we do not set a threshold to limit the memory ca-
pacity in protected space, and the hotspot function may run out
the server’s cache resources in extreme cases. Fortunately, server-
less workloads are commonly variable, and Flame can dynamically
tune the cache resources usage between hotspot and non-hotspot
functions (see § 6.3), and the extreme cases rarely exist.

4.3.2 Lifecycle of Cached Functions. Figure 4(b) shows the lifecycle
of the cached function instances on each server. The cache place-
ment switch between the protected space and temporary space can
be triggered by the Cachelet from several events, e.g., hotspot func-
tion list update and non-hotspot function eviction. We list these
Cachelet cache operations in the following:
Hotspot Function List Update: After the CacheManager updates
the global hotspot function list, it notifies the Cachelet to synchro-
nize and check the cached instances on each server. On each server,
if a function no longer belongs to the set of hotspot functions, all
of its cached instances are moved from the protected space to the
temporary space. Similarly, if a function is newly added to the list,
its available instances cached on the server are moved from the
temporary space to the protected space.
Non-Hotspot Function Release/Eviction: For each non-hotspot
function, the Cachelet records its keep-alive time setting (e.g., 300
s) and periodically checks whether its instance’s idle time exceeds
the lifetime limitation. The function’s maximum keep-alive time
is determined by the CacheManager, and the instance idle time is
calculated by recording its last active timestamp, which is refreshed
after each invocation. If a non-hotspot function instance needs to
be released or evicted, the Cachelet removes it from the temporary
space and invokes the serverless platform to delete it.
Cache Redundancy Reclamation: On each server, hotspot func-
tions are cached in the protected space until the hotspot function list
is updated. Due to the one-to-one mapping design between requests
and instances in today’s serverless platforms, a large number of
hotspot function instances will be created in a short period of time
when workload burst occurs [34]. This can result in considerable
cache resource waste since newly launched instances will not be
released before the next hotspot function list update. Therefore, it
is necessary to shrink the cached instances of hotspot functions
after workload bursts.

However, determining the number of cached instances and their
settings in each server at any time brings challenges for the global
CacheManager, especially when it works in a high concurrency sce-
nario. Therefore, we adopt a more practical approach, i.e., offloading
the cache reclamation control to the underlying Cachelet to reduce
the decision complexity. On each server, the Cachelet monitors
the reuse rate of cached functions and releases over-provisioned
instances through an adaptive reclamation algorithm. From a per-
ceptive of centralized system design, this hinders the CacheManager
from making optimal cache decisions but helps to reduce the deci-
sion overhead. Our experimental results show that it brings only
14% of performance loss compared to the optimal cache decisions
(discussed in § 6.6).

5 IMPLEMENTATION
Flame is implemented on OpenFaaS [22], an event-driven serverless
computing platform on top of Kubernetes, with approximately 4,000
lines of Golang. We introduce the keep-alive policy in OpenFaaS
to replace the default capacity-based scaling mechanism and add
new components (e.g., a global CacheManager and Cachelet) for
hotspot function detection and caching. This modification mainly
refers to gateway, faas-netes and alert-manager, and we reuse many
of the existing modules, such as authority certification, security

158



Flame: A Centralized Cache Controller for Serverless Computing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Experimental testbed configuration.
Component Specification Component Specification
CPU device Intel Xeon Silver-4215 Shared LLC Size 11MB

Number of sockets 2 Memory Capacity 256GB
Processor BaseFreq. 2.50 GHz Operating System Ubuntu 16.04

CPU Threads 64 (32 physical cores) SSD Capacity 960GB
Memory Bandwidth 20 GB/s Network bandwidth 10 Gbps

checking and NAT streaming to minimize the development cost.
Additionally, we develop approximately 7,000 lines of code (Java
and Linux Shells) for system simulation and testing.
Simulator. We develop a simulator to explore the preferred system
configuration in our caching policy and validating its efficiency on
a large-scale testbed. The simulator is written in Java with approxi-
mately 12,000 lines of code. It implements different caching policies
to help us find the optimal parameter setting in Flame.

6 EVALUATION
6.1 Setup & Methodology
Testbed: We evaluate our caching system on an 8-server local
cluster. Each server is configured with 256 GB RAM and 32-core
Intel Xeon Silver 2.50 GHz CPUs. The server runs the modified
OpenFaaS (i.e., Flame) and Ubuntu 16.04. Table 1 summarizes the
cluster’s configuration. All servers are connected via 10 Gbps, full-
bisection bandwidth Ethernet. Additionally, we use the simulator to
find the optimal parameter setting of Flame’s caching policy, which
takes the same workloads and server configurations in the real-
world testbed. Large-scale experiments are also conducted from
simulation.
Workload: We useAzure’s function traces [27] to generate production-
like workload arrival patterns in our evaluation. The traces include
the function names, function memory usage, request arrival times-
tamps, execution time and startup time from more than 50,000
functions over two weeks. We use smaller traces to match our
testbed. To this end, We divide these functions into four groups
based on the number of invocations, and randomly select 96 func-
tions from each group to form a sample. As shown in Table 2, we
build a total of 8 independent workload traces. Each trace set in-
cludes the invocation records from 384 functions across one week.
These traces exhibit diverse workload behavior in terms of request
arrival rate, hot function distribution, and memory consumption.
Benchmarks: Since the Azure’s production traces do not contain
the function code, we use real-world serverless applications from
the ServerlessBench [35] and FunctionBench [13] benchmark suites
to evaluate Flame’s cache efficiency. The benchmark pool consists
of 22 serverless applications, such as data analytics, machine learn-
ing and scientific computing, etc. By configuring different mem-
ory sizes and input parameters for these applications, we expand
the size of the benchmark pool to a total of 384 functions. These
benchmarks also present a wide range of function characteristics,
including the application type, execution time and coldstart over-
head (see Table 5 in Appendix). We generate requests towards them
following the request arrival timestamps in our 8 workload traces.
For each function in these traces, we find the nearest match of a
benchmark function from our benchmark pool based on its mem-
ory allocation and execution time to represent the corresponding
function behavior. The function’s name, memory size, execution

Table 2: Workloads used in Flame’s testbed.
Workload # of

Func.
# of

Requests
Avg.
Reqs/s

(Top-N func.: >90% total invocs.)
Name # of Functions Mem Usage perc.

Trace A 384 3,111,827 36 14 (3.64%) 40.57%
Trace B 384 11,363,701 132 4 (1.04%) 15.87%
Trace C 384 12,411,923 144 3 (0.78%) 69.09%
Trace D 384 24,774,632 287 2 (0.52%) 46.81%
Trace E 384 3,462,726 40 12 (3.12%) 68.77%
Trace F 384 2,735,329 32 16 (4.16%) 84.89%
Trace G 384 3,665,540 42 13 (3.38%) 12.35%
Trace H 384 2,183,501 25 17 (4.42%) 30.03%

time and startup time in these traces are replaced with the actual
values of our benchmarks.
Comparison systems: We compare Flame with four existing
cache-based methods: the TTL-based keep-alive, FaasCache, CH-
RLU and Icebreaker.
• TTL-based [29]: Existing serverless platforms, such as AWS
Lambda and OpenWhisk, use a TTL-based keep-alive policy
to cache functions (e.g., 15 min) after each invocation. In our
evaluation, we use the original OpenWhisk as a baseline.
• FaasCache [8] (ASPLOS’s 21): FaasCache takes into account
the heterogeneity of functions including factors such as
popularity, memory consumption, and coldstart overhead
when caching functions in serverless platforms. It employs
a priority-based greedy caching policy to determine which
functions should be kept alive in each server.
• CH-RLU [9] (HPDC’s 22): CH-RLU aims to reduce the re-
source contentions in serverless cluster by trading off the
cache locality and server load. It proposes an enhanced
hashing-based load-balancing policy to schedule requests
and cache functions in serverless cluster.
• Icebreaker [26] (ASPLOS’s 22): Icebreaker focuses on both
function performance and keep-alive cost in heterogeneous
serverless clusters. It determines to cache functions on a high-
end machine, or a low-end machine, or not cache it based
on its coldstart ratio, resource over-provisioning and server
affinity. In our homogeneous testbed, we use Icebreaker’s
controller to determine whether to cache a function or not.

Metrics: We consider three evaluation metrics: the coldstart ratio
(i.e., the proportion of coldstart invocations across all requests in
serverless cluster); the function latency (i.e., the duration between
request arrivals in the getaway and invocation completion); and
the overall memory consumption for caching functions (i.e., the
memory usage for keeping functions alive and executing requests).

6.2 Parameterizing Flame
Both the region size and keep-alive time setting can affect Flame’s
cache efficiency. A larger region size brings fewer coldstart invo-
cations for hotspot functions but requires a larger memory size
to cache them, which may also preempt the server resources and
amplify the second-class citizen effect. A shorter keep-alive time
setting enables more elastic caching resource allocation in each
server but may also result in a higher cache miss ratio for the non-
hotspot functions and increase the scheduling pressure. To find the
optimal parameter sittings, we measure the coldstart invocation
ratio and cache resource usage from a large number of simulations

159



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

60
s,

0.
5

60
s,

0.
7

60
s,

0.
9

18
0s

,0
.5

18
0s

,0
.7

18
0s

,0
.9

30
0s

,0
.5

30
0s

,0
.7

30
0s

,0
.9

60
0s

,0
.5

60
0s

,0
.7

60
0s

,0
.9

90
0s

,0
.5

90
0s

,0
.7

90
0s

,0
.9

0

1

2

M
em

or
y 

U
sa

ge
 (G

B·
s)

1e7
9.

60
E+

06
1.

89
1%

1.
09

E+
07

1.
76

9%
1.

11
E+

07
1.

62
3%

1.
12

E+
07

1.
50

9%
1.

22
E+

07
1.

29
2%

1.
32

E+
07

1.
02

9%
1.

41
E+

07
0.

94
9%

1.
50

E+
07

0.
91

8%
1.

53
E+

07
0.

91
5%

1.
63

E+
07

0.
83

9%
1.

66
E+

07
0.

82
1%

1.
74

E+
07

0.
8%

1.
78

E+
07

0.
73

5%
1.

79
E+

07
0.

69
4%

1.
87

E+
07

0.
63

8%

0
0.4%
0.8%
1.2%
1.6%

C
ol

ds
ta

rt 
R

at
io

 (%
)

Memory usage Coldstart ratio

(a) Parameter setting

20
48

40
96

81
92

12
28

8
16

38
4

20
48

0
24

57
6

28
67

2
32

76
8

40
96

0

Memory Size (MB)

0.0

0.5

1.0

1.5

2.0

M
em

or
y 

U
sa

ge
 (G

B·
s)

1e7
Memory usage

0

0.4%

0.8%

1.2%

1.6%

C
ol

ds
ta

rt 
R

at
io

 (%
)

Coldstart ratio

(b) Sensitivity analysis

Figure 5: (a) Cache efficiency of Flame under different region size and keep-alive time settings; (b) Effectiveness of Flame’s
Eden-setting.

2 4 6 8
6

1.
2

1.
25

2.
09

1.
08

2.
13

5.
84

1.
03

2.
16

2.
08

1.
16

0.
98

1.
0

0.
91

1.
25

1.
23

1.
04

1.
36

1.
08

1.
2

1.
27

2.
04

1.
06

2.
09

5.
12

1.
03

2.
15

1.
98

1 1 1 1 1 1 1 1 11.
16

0.
93

0.
94

0.
87

1.
14

1.
16

1.
04

1.
27

1.
03

FaasCache TTL-based CH-RLU Flame Icebreaker

A B C D E F G H GeoMean

1

2

M
em

or
y 

U
sa

ge
(N
or
m
al
iz
ed
)

(a) Comparison under the hashing-based load-balancing

2 4 6 8
4

1.
43

1.
05

1.
18

0.
99

1.
7

3.
39

1.
31

1.
87

1.
67

1.
27

1.
05

1.
13

1.
0

1.
27

1.
3

1.
19

1.
31

1.
2

0.
98

0.
82

1.
02

0.
9

1.
13

1.
76

0.
94

1.
27

1.
12

1 1 1 1 1 1 1 1 11.
13

1.
04

1.
09

1.
0

0.
74

1.
18

1.
09

1.
15

1.
06

FaasCache TTL-based CH-RLU Flame Icebreaker

A B C D E F G H GeoMean

1

2

M
em

or
y 

U
sa

ge
(N
or
m
al
iz
ed
)

(b) Comparison under the round-robin-based load-balancing

Figure 6: Comparison of the memory usage under the (a) hashing-based and (b) round-robin-based load-balancing rules.

under different 𝑟 × 𝑡 combinations, where 𝑡 represents the keep-
alive time. We do these experiments considering three region size
settings (0.5, 0.7 and 0.9) with a discrete keep-alive time settings
from 60 s to 900 s.

Figure 5(a) presents the results of the study across 15 different
𝑟 × 𝑡 groups under the hashing-based load-balancing rule. Note that
the memory cost and coldstart ratio in each group are the geometric
means of the results across 8 different workloads. From this char-
acterization, we can see that the geometric mean of the coldstart
ratio reaches less than 1% with modest memory consumption under
0.5 of region size and 300 s of keep-alive time setting, which we
call the “Eden-setting". We find the optimal parameter settings of
Flame under round-robin load-balancing rule (not shown) from the
similar way. Figure 5(b) further presents the cache efficiency of
Flame with the Eden-setting. We can see that the coldstart ratio de-
creases quickly as the allocated cache resources increase and finally
converges after a knee-point. This demonstrates the effectiveness
of Flame’s cache management. Thus, we use the Eden-setting (i.e.,
𝑟 = 0.5, 𝑡 = 300 s) to evaluate Flame’s performance in the following
experiments.

6.3 Overall Performance
We evaluate the overall performance of Flame using a real 8-server
production cluster. The evaluation results of five different cache
methods (FaasCache, TTL-based keep-alive, Flame, CH-RLU, and
Icebreaker) under 8 different workload traces are shown in Figure
6. We mainly focus on comparing the overall memory usage and
coldstart ratio of each method, which are normalized to the results
in Flame.
High efficiency: Flame can reduce the cache resource usage
by 26%-54% on average and reduce the coldstart ratio by more

than 7× in serverless cluster. Figure 6(a) presents the normal-
ized memory consumption of different caching methods under the
hashing-based load-balancing rule. The results indicate that Flame
reduces the overall memory consumption by 36% and 33% on av-
erage compared to FaasCache and CH-RLU (80% on maximum in
trace F where most of the cache resource usage comes from hotspot
functions), respectively. Figure 7(a) shows the corresponding warm
invocation ratios, which are normalized to the results in Flame.
Note that although TTL-based keep-alive method consumes only
half of the cache resources than FaasCache, it leads to approxi-
mately 1.3 × higher coldstart ratio. CH-RLU uses a priority-based
caching policy that is similar to that of FaasCache in each server,
but its load-aware request distribution policy can violate the cache
locality, and thus cause a high coldstart ratio (16.8% at maximum
in trace B). Icebreaker reduces the overall cache resource usage
by decreasing the number of cached functions and achieves a low
keep-alive cost. However, the workload fluctuations and function
behavior changes make it challenging to make the best decisions,
leading to approximately 2.7 × higher coldstart ratio than Flame. In
comparison, Flame nearly achieves the best function performance
across 8 workload traces, while the FaasCache, CH-RLU, TTL-based
keep-alive, and Icebreaker can only reach 99.1%, 92.7%, 96.1%, and
95.1% of warm invocation ratios than Flame, respectively.

The centralized cache controller in Flame is designed to be
generic and workload agnostic, which makes it achieve a better
performance under different workload distributions in serverless
cluster. The evaluation results of Flame in an 8-server cluster under
the round-robin-based load-balancing rule are shown in Figures
6(b) and 7(b). Unlike the hashing-based load-balancing rule, the
round-robin-based load-balancing spreads requests across multiple
servers even when the invocations come from the same function.

160



Flame: A Centralized Cache Controller for Serverless Computing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

A B C D E F G H GeoMean
0.8

0.9

1.0

W
ar

m
 In

vo
c.

 R
at

io

0.
99

1

0.
99

1

0.
99

0.
99

2

0.
99

0.
97

6

0.
99

0.
99

1

0.
99

1

0.
98

6

0.
83

1

0.
97

9

0.
93

0.
94

9

0.
90

8

0.
98

6

0.
90

9

0.
92

7

0.
97

5

0.
99

9

0.
98

1

0.
92

2

0.
98

8

0.
96

4

0.
98

0.
99

4

0.
96

1

0.
97

0.
99

6

0.
98

0.
90

3

0.
97

9

0.
95

3

0.
97

7

0.
98

2

0.
95

1

(N
or
m
al
iz
ed
) FaasCache CH-RLU TTL-based Icebreaker

(a) Comparison under the hashing-based load-balancing
A B C D E F G H GeoMean

0.8

0.9

1.0

W
ar

m
 In

vo
c.

 R
at

io

0.
93

1

0.
98

0.
98

0.
98

2

0.
95

0.
93

0.
98

1

0.
98

0.
97

5

0.
94

8

0.
98

5

0.
96

7

0.
93

4

0.
96

1

0.
86

2

0.
99

9

1.
0

0.
95

4

0.
89

0.
94

5

0.
91

6

0.
94

0.
90

9

0.
87

9

0.
93

9

0.
93

5

0.
92

9

0.
84

5

0.
92

7

0.
91

0.
94

0.
87

7

0.
84

4

0.
90

8

0.
89

8

0.
91

7

(N
or
m
al
iz
ed
) FaasCache CH-RLU TTL-based Icebreaker

(b) Comparison under the round-robin-based load-balancing

Figure 7: Comparison of the warm invocation ratio under the (a) hashing-based and (b) round-robin-based load-balancing rules.
These results are normalized to Flame, which is set to 1.

0  

200

400

600

#
 o

f 
in

s
ta

n
c
e

s

Non-hotspot functions

Hotspot functions

0 4 8 12 16 20 24

Timeline (h)

0  

80 

160

240

M
e
m

o
ry

 (
G

B
) FaasCache

Icebreaker

(a) Cache resource allocation

0  96 192 288 384

Function ID

0

2

4

6

8

M
e

m
o

ry
 u

s
a

g
e

 (
G

B
·s

) 10
5

10
1

10
4

10
7

#
 o

f 
re

q
u
e
s
ts

Mem. Usage
# of requests

(b) FaasCache

0  96 192 288 384

Function ID

0

2

4

6

8

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
·s

) 10
5

10
1

10
4

10
7

#
 o

f 
R

e
q
u
e
s
ts

Mem. usage
# of requests

(c) Flame

0  96 192 288 384

Function ID

0

2

4

6

8

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
·s

) 10
5

10
1

10
4

10
7

#
 o

f 
R

e
q
u
e
s
ts

Mem. usage
# of requests

(d) Icebreaker

Figure 8: (a) The number of cached function instances in Flame’s runtime process and the runtime cache resource usage in
FaasCache, Flame and Icebreaker; Distribution of the function memory usage in (b) FaasCache, (c) Icebreaker and (d) Flame.
The functions are sorted by the number of invocations in descending order.

This can help balance workloads across different servers but vio-
lates the cache locality. As a result, all of the five compared cache
methods consume more cache resources (approximately 2× mem-
ory usage increase on average) to achieve a low coldstart ratio.
However, Flame overcomes these challenges and achieves better
performance. When compared to FaasCache, it reduces the cache
resource usage by approximately 40% (71% on maximum) with a
lower coldstart ratio. Although Flame reduces only 10% of cache
resource usage compared to TTL-based keep-alive and Icebreaker,
the latter two methods have higher coldstart ratios since the spread
workload reduces the function reuse rate in their caching policies.
Overall, Flame improves the coldstart ratios by nearly 2.9× and
2.7× on average when compared with TTL-based keep-alive and
Icebreaker, respectively.
Flexible cache allocation: Flame can efficiently tune the num-
ber of cached hotspot functions and their cache resource
provision with workload changes. Flame’s hybrid caching pol-
icy enables it to flexibly allocate the cached resources for both
hotspot functions and non-hotspot functions. Its adaptive cache
reclamation mechanism in the Cachelet can also help to reduce
resource over-provisioning, thus improving cache efficiency. Fig-
ure 8(a) shows the number of cached instances and their memory
usage in Flame’s runtime control. We can observe that Flame ad-
justs cache decisions dynamically according to workload changes.
During a workload burst, the exponentially decaying algorithm
can detect hotspot functions and prevent oscillations in caching
decisions. After the workload spike (between 2 h and 4 h), Flame
automatically reclaims the over-provisioned function instances to
reduce cache resource usage. In comparison, FaasCache caches

all used functions as long as the cache resources are sufficient,
which makes it quickly exhaust the server’s memory. Icebreaker
uses an FFT-based workload predictor to predict request arrival
rate and make cache decisions. However, sudden workload spikes
make them difficult to capture the short-term changes in hotspot
functions, thus leading to an underestimation of cache resource
allocation. Although Icebreaker consumes fewer cache resources
than FaasCache, it also results in a high coldstart rate.
Less redundancy: Flame can reduce much of the cache re-
dundancy for the cached functions in serverless cluster. To
illustrate the efficiency of cache decisions in Flame, we take trace
E as an example to show the memory consumption breakdown
for each function, which includes the memory usage per function
for caching instances and executing user requests. Figure 8 shows
the details, where the functions are sorted by the number of in-
vocations in descending order. In this example, FaasCache takes
25,188 TB·s of memory to cache all the functions since its local
cache control leads to much cache redundancy across the servers.
Icebreaker does not distinguish the hotspot functions but reduce
the overall caching time for functions, which makes it consumes
only 13,463 TB·s of memory, with nearly 50% of cache resource
saving per function than FaasCache. However, less resource con-
sumption does not means lower coldstart ratio. Flame’s hybrid
caching policy improves the memory cost considerably for most
of the functions, with only 11,803 TB·s of memory consumption.
We could also see that approximately 82% of the memory savings
(13,385 TB·s) come from the top-N functions that generate more
than 90% of the total requests, which demonstrates the effectiveness
of Flame’s hotspot-aware cache scheduling and reclamation.

161



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

0 500 1000 1500
Latency (ms)

0.25

0.5

0.75

1

C
D

F CH-RLU
FaasCache
Flame
TTL-based
Icebreaker

(a) Hashing-based load-balancing

0 1000 2000 3000

Latency (ms)

0.25

0.5

0.75

1

C
D

F CH-RLU
FaasCache
Flame
TTL-based
Icebreaker

(b) Round-robin-based load-balancing

Figure 9: Function latency distributions of five caching meth-
ods under the (a) hashing-based and (b) round-robin-based
load-balancing rules.

Fewer hotspot contentions: Flame’s centralized caching deci-
sions can mitigate hotspot contentions in serverless cluster,
and avoid intra-server performance bottlenecks. The work-
load skewness of hotspot functions can lead to cache resource
contentions and result in frequent scheduling failures or request
discards. Table 3 shows a breakdown of function coldstart ratio and
request drop ratio for the five compared methods. The drop ratio is
the fraction of requests that cannot be processed due to insufficient
cache resources in the cluster. We see that Flame’s hotspot-aware
cache scheduling greatly reduces cache contentions in serverless
clusters, resulting in only 0.86% of coldstart ratios and 0.02% of
drop ratios. Among the rest of four methods, FaasCache has the
smallest drop ratio (0.77%) since its priority-based caching policy
can evict unpopular functions to release cache resources. When
compared to the TTL-based keep-alive method (1.63% drop ratio),
CH-RLU’s load balancing-based cache scheduling policy reduces
resource contentions (1.41% drop ratio) but has a higher coldstart
ratio (5.34%) due to its lower cache reuse rate. Icebreaker’s caching
algorithm reduces the number of cached functions in the cluster,
which helps reduce the request drop ratio by approximately 20%
when compared to the TTL-based keep-alive method. However, it
also results in more coldstart invocations (6.11% of coldstart ratio).
In summary, Flame’s centralized caching decisions reduce 38.7×-
81.4× of hotspot contentions compared to the existing local cache
control methods, which makes it achieve 2.9×-8.4× of performance
improvements over them.
Low request latency: Flame can reduce the 99th percentile
latency more than 10× by mitigating the coldstart overhead.
Figure 9 depicts the CDF of request latency for different caching
methods. For each method, we aggregate all of the function invoca-
tions under the 8 workload traces to compare their latency distribu-
tions. We can see that Flame has the lowest function latency under
both the hashing-based and round-robin-based load-balancing rules.
CH-RLU has a better function performance than TTL-based keep-
alive and Icebreaker under a consolidated workload distribution
(i.e., consistent hashing in Figure 9(a)). However, its caching effi-
ciency decreases when using a load-balanced request dispatcher
(round-robin in Figure 9(b)). FaasCache’s priority-based caching
policy always gives lower priority to functions with longer startup
times, resulting in longer tail latency than CH-RLU. However, its
smaller coldstart ratio enables it to have lower function latency
than TTL-based keep-alive and Icebreaker. Icebreaker and TTL-
based keep-alive method have similar latency distributions. Both of

x4 x8 x16 x24 x32
Cluster scale (# of servers)

0.00

0.05

0.10

0.15

C
ol

ds
ta

rt 
R

at
io TTL-based

Icebreaker
FaasCache
Flame

(a) Performance evaluation under differ-
ent cluster scales

TTL IceB FC Flame
Caching policy

0.0
0.1
0.2
0.3
0.4
0.5

C
ol

ds
ta

rt 
R

at
io 256GB

128GB
64GB

32GB
16GB

(b) Performance evaluation under differ-
ent server memory sizes

Figure 10: Performance evaluation of Flame by changing (a)
server scale and (b) server memory size. TTL: TTL-based;
IceB: Icebreaker; FC: FaasCache.

Table 3: Coldstart ratio and drop ratio breakdown.
Methods Coldstart Ratio Drop Ratio Overall

Flame 0.86% 0.02% 0.88%
FaasCache 1.83% (↑2.1×) 0.77% (↑38.7×) 2.61% (↑2.9×)
CH-RLU 5.34% (↑6.2×) 1.41% (↑70.5×) 6.75% (↑7.7×)
TTL-based 4.68% (↑5.4×) 1.63% (↑81.4×) 6.31% (↑7.2×)
Icebreaker 6.11% (↑7.1×) 1.34% (↑66.7×) 7.45% (↑8.4×)

them adopt a time-length-fixed caching policy, which leads to high
coldstart ratios especially when in unpredictable workload patterns.
Therefore, they have the worst function performance (a more than
10× increase in 𝑃99 latency than Flame) across the compared five
methods.

6.4 Sensitivity Analysis
We also evaluate the sensitivity of Flame’s cache efficiency when
the cluster scale of server memory capacity changes.
Better scalability: Flame can achieve a high cache efficiency in
larger-scale clusters or clusters with less server memory. To
evaluate the cache efficiency of Flame under different cluster scales,
we change the number of servers in the testbed while keeping the
total memory capacity constant. Figure 10(a) shows a comparison
of the coldstart ratio for cluster scales of 4, 8, 16, 24, and 32 servers.
We find that the coldstart ratio in the TTL-based keep-alive method,
FaasCache, and Icebreaker increase dramatically as the cluster scale
increased. This is due to their local cache control causing more
hotspot contentions and cache redundancy in small-sized servers.
As a result, the overall function performance in these methods
becomes even worse. However, Flame is able to maintain a lower
coldstart ratio thanks to its centralized cache management. Figure
10(b) shows the evaluation results when we only scale down the
server’s memory capacity. We find that FaasCache, TTL-based keep-
alive, and Icebreaker all suffer from high coldstart ratios when the
server memory is reduced. Although the coldstart ratio of Flame
increases to nearly 8% when the server memory is less than 128
GB, it still achieves the lowest coldstart ratio due to its effective
caching policy design.

6.5 Overhead
We further analyze the system overhead of Flame’s centralized
cache controller.
System overhead: Flame incurs low system overhead, which
enables it to be easily extensible for a large-scale practical
deployment. Flame mainly has three sources of overhead at its

162



Flame: A Centralized Cache Controller for Serverless Computing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

10 100 1000

Scheduling concurrency

0   

500 

1000

1500

2000

A
v
g

. 
L

a
te

n
c
y
 (

m
s
)

schedule()+network
schedule()

20

500
200

50
40

(a) Cache scheduling time

500 3K15K 60K 300K

Request (reqs/s)

0   

400 

800 

1200

A
v
g

. 
L

a
te

n
c
y
 (

m
s
)

No-partition
2-partition
3-partition
4-partition

(b) Scheduling time optimization

Figure 11: Evaluation of Flame’s scheduling overhead.
runtime cache control: (1) hotspot function detection (HFD), (2)
instance lifetime management (ILM) in each Cachelet and (3) cache
scheduling (CS) in CacheManager. We provide a detailed analysis
of each:
• HFD is a single module that runs as a daemon process inside
CacheManager. Its function invocation counter and hot-score
calculation are run per function in a parallel manner, so the
overhead of these actions does not increase much with the
number of deployment functions or the number of servers.
Although the detection time of top-N hotspot functions is
linearly correlated with the number of functions, it takes
only 1.5 ms to deal with 384 functions in our measurements.
• ILM is a daemon process launched in each Cachelet. The
instance lifetime monitor in ILM also runs in parallel for
each local function. When the global hotspot function list is
updated, synchronizing it to each Cachelet incurs negligible
overhead (about 800 us). In each server, the Cachelet peri-
odically runs two threads: (i) updating instance’s keep-alive
setting and (ii) moving instances across three memory spaces.
The time interval for thread execution is 5 seconds in our
system. When the thread is triggered, the Cachelet invokes
Kubernetes’s APIs to create (or delete) function instances,
which takes less than 1 ms.
• CS is a key module of the centralized cache controller in
CacheManager. It is invoked only when cache-miss occurs.
Thus, even a high volume of concurrent requests may not
invoke it many times at low cache-miss ratio. In our experi-
ments, we measure that the CS algorithm incurs an overhead
of 2 ms on a 384-function scale deployment. We also present
CacheManager’s average scheduling time under different
scheduling concurrency pressures. As shown in Figure 11(a),
the CS generates about 240 ms of decision latency under
200 of the scheduling concurrency (i.e., 200 cache misses
per second). Thus, given 1% of a coldstart ratio, Flame is
able to handle up to 83K concurrent requests per second
theoretically (𝑚𝑎𝑥_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 200

0.24×0.01% ).
Additionally, Flame adopts a lightweight design and takes only

a small amount of resources to run. Our measurement shows that
the CacheManager takes up 0.03 CPU cores and 175 MB of memory
during its runtime, while each Cachelet consumes only 0.05 CPU
cores and 100 MB of memory. Assuming that Flame is deployed in a
production cluster with 500 servers, including 8400 CPUs and 17TB
memory that serves over 20,000 functions, Flame would require
2 CPUs and 8GB of memory to run its CacheManager, while all
Cachelet would consume about 25 CPU cores and 48 GB memory,
which is relatively small in a production system.

A B C D E F G H GeoMean
0
1
2
3

M
em

or
y 

U
sa

ge
 (G

B·
s) 1e7

1.
27

E+
07

2.
41

E+
07

2.
27

E+
07

2.
38

E+
07

1.
24

E+
07

1.
75

E+
07

1.
18

E+
07

1.
17

E+
07

1.
71

E+
07

1.
15

E+
07

1.
86

E+
07

1.
97

E+
07

2.
11

E+
07

1.
17

E+
07

1.
52

E+
07

1.
11

E+
07

1.
15

E+
07

1.
50

E+
07

Flame Flame (Optimal)

Figure 12: Comparison of memory usage between the native
Flame and Flame (Optimal) under <1 of coldstart ratio.

Table 4: Comparison of cache cost (Coldstart ratio <1%).

TTL FaasCache Flame Icebreaker

Mem usage/req 1132 MB·s 663 MB·s 370 MB·s 988 MB·s
Cache cost/req [$] 1.85 × 10−5 1.08 ×10−5 6.08 × 10−6 1.62 × 10−5

However, in an extremely large-scale cluster, the centralized
controller of Flame may encounter scalability issues. To mitigate
this problem, higher scheduling parallelism and workload parti-
tioning can be employed. We also present the evaluation results of
using workload partitioning technique to reduce CacheManager’s
decision pressure. As shown in Figure 11(b), the average decision
latency for each function in the non-partition design exceeds 1000
ms under a concurrence pressure of 300K reqs/s. When using a
3-partition technique in Flame’s front-ends, the average decision
latency for each function can be reduced to approximately 200
ms, resulting in more than a 5× performance improvement. There-
fore, we recommend using the partitioning technique to address
the scalability issues of Flame in extremely large-scale serverless
scenarios.

6.6 Discussion
We finally discuss the potential cost benefit for serverless provider
with Flame’s improvement.
Economic benefit: Flame can help cloud providers reduce the
resource cost in caching serverless functions by more than
40%. To evaluate the economic benefits of Flame, we record the
total memory consumption of each caching policy and derive the
average memory cost per invocation. We set the price of 1 GB of
memory to 0.06048$/hour, following the setting of the AWS Lambda
service in the Eastern United States (Ohio) [25]. Table 4 shows that
Flame reduces the memory cost per request by approximately 44%,
67%, and 62% when compared to FaasCache, TTL-based keep-alive,
and Icebreaker, respectively. Considering the scale of our produc-
tion serverless cluster, which deploys more than 40,000 serverless
functions serving 1.3 billion requests per day, the memory cost
of caching functions is approximately 8,810,000$ per year. If we
use Flame to replace the existing keep-alive policy, the memory
cost will decrease to 2,880,000$ per year, saving approximately
5,900,000$ every year.
Optimality: Decoupling the cache reclamation control to
Cachelet enables Flame to reduce its system overhead, while
this only causes approximately 20% of performance loss com-
pared to the optimal systemdesign.As previously demonstrated,
offloading partial caching management controls from CacheMan-
ager to the underlying Cachelets reduces decision-making overhead
in concurrency scenarios, while this may also lead to a certain

163



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

amount of throughput loss, we also compare Flame with Flame
(Optimal) to better understand its roofline performance. Flame (Op-
timal) is a monolithic system design that integrates the Cachelet
functionalities (e.g., cache reclamation) inside the CacheManager,
which enables it to make optimal caching decisions from a central-
ized cache control. Figure 12 depicts their performance difference.
We see that Flame can reach nearly 86% of the performance on
average from Flame (Optimal). The experimental results indicate
that the CacheManager contributes most of the cache resource sav-
ing in Flame’s cache management, and this also demonstrates the
effectiveness of the existing Flame architecture design.

7 RELATEDWORK
Startup acceleration: To mitigate the coldstart overhead, various
techniques have been proposed to the sandbox initialization time or
application startup time. At the runtime layer, Mohan et al. [20] pre-
allocate virtual network interfaces for newly launched containers to
reduce the startup time. SOCK [21] caches commonly used Python
libraries to reduce function initialization time. Catalyzer [6] and
REAP [28] use a new checkpoint and snapshot mechanism to re-
duce the startup time of their gvisor-based [12] security containers.
At the application layer, LambdaLite [31] proposes an application-
level performance optimization approach for reducing the code and
dependency size for Python applications in serverless platforms.
Additionally, microVMs [1] and unikernels [19] are being used in
several serverless platforms to reduce the coldstart overhead. How-
ever, as shown in previous work [8], these fast startup methods do
not eliminate the coldstart problem since the application initialized
overhead still remains.

Our approach aims to “avoid" coldstart operations by retaining
the entire execution environment, which can provide near-zero
coldstart latency for many short-lived functions. Moreover, our
cache-based approach is orthogonal to these techniques.
Function caching: Function caching has also recently gained at-
tention. Prior work [10, 17, 24] focuses on static keep-alive policies
or simple “warm container pools", these mechanisms are easy to
implement but suffer from a high keep-alive cost. Several studies
predict workload behaviors to help make cache decisions, thus im-
proving cache reuse rate or reducing keep-alive cost. For example,
Shahrda et al. [27] use a hybrid histogram policy (HHP) to predict
request arrival intervals and dynamically cache functions through a
“prefetching" approach. IceBreaker [26] uses a time-series prediction
approach to determine function cache decisions in a heterogeneous
serverless system, thus reducing the function’s keep-alive cost.

Although these prediction-based caching methods can help re-
duce the keep-alive cost, their effectiveness may be affected by
workload variations. Our approach adopts a reactive caching policy,
like FaasCache [8], which is designed to be general and workload-
agnostic, and it can be combined with prediction-based caching
methods to further improve system-wide performance. Moreover,
in contrast to these existing caching policies, our approach focuses
on hot-spot contention and cache redundancy issues in local cache
control, and is the first to explore and demonstrate the effectiveness
of centralized cache control.
Instance sharing or reusing: SAND [2] warms subsequent func-
tion invocations within an application by reusing the same sandbox

environment. Faastlane [15] colocates functions in the same con-
tainer with threads so that it can bypass the subsequent coldstart
invocations in child functions. Fifer [11] uses a function-aware
container scaling technique and request batching mechanism to
bin packing jobs to fewer containers, thus reducing coldstarts
in function-chains. Pagurus [18] proposes an inter-function con-
tainer sharing technique to reduce the function keep-alive cost in
prewarm-based methods. It alleviates the coldstart by re-purposing
a warm but idle container from another function. These solutions
improve the instance reuse rate by modifying the function system
architecture or sandbox operation mechanisms. Our approach can
also be combined with these techniques to further improve instance
reuse rate.

8 CONCLUSION
In this paper, we focus on the function caching to mitigate coldstart
problem in serverless computing and find the existing local cache
control suffer from hotspot contention and cache redundancy is-
sues, which can result in high cache miss ratio and cache resource
usage. To address this problem, we propose a centralized caching
system that coordinates caching across servers. Our preliminary
exploration shows that such a system can achieve better cache effi-
ciency than local cache control. We believe that this approach could
be particularly useful in addressing the coldstart problem. In the
future, we plan to explore multi-layer caching mechanisms by sep-
arating the sandbox, language runtime, and user code in serverless
functions to improve system cache efficiency even further.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-
ment Program of ChinaNo.2022YFB4500702; project ZR2022LZH018
supported by Shandong Provincial Natural Science Foundation;
the National Natural Science Foundation of China under grant
62141218, 62372322; the open project of Zhejiang Lab (2021DA0
AM01/003) and the CCF-Huawei Populus euphratica Innovation
Research Funding CCF-HuaweiSE2022006.

A ARTIFACT
A.1 Abstract
Flame is a technique that reduces the coldstart rate and function
caching cost of serverless functions, which is designed to deploy
in serverless platforms by cloud providers. Flame’s basic idea is
to identify the hotspot functions in serverless workload scenarios
and manage their cache resources allocation and scheduling from
a centralized cache controller. Flame consists of two major com-
ponents: (1) a cluster-level CacheManager, and (2) a Cachelet that
runs in each node. The CacheManager identifies the cluster-level
hotspot functions and makes cache decisions from a global view of
serverless cluster. The Cachelet receives the cache decisions from
CacheManager and manages the cached function instances in each
node. Our artifact includes a local Flame implementation for func-
tion caching written in Java. The artifact packages the scripts for
setting up and launching Flame. It also contains the data obtained
in our experimentation. The artifact is available at the following
link: https://doi.org/10.5281/zenodo.8398112.

It includes the following:

164

https://doi.org/10.5281/zenodo.8398112


Flame: A Centralized Cache Controller for Serverless Computing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

• The framework and source code of Flame’s two-layer cache
controller implementation.
• Scripts and instructions to set up the benchmarks and serverless
invocation trace.
• Scripts to set up the control system of Flame which runs from a
local environment.
• Function caching cost data of executing Flame and other com-
peting techniques.
• Coldstart ratio of executing Flame and other competing tech-
niques.
• Data of executing Flame and other competing techniques for
different request arrival patterns in workload A-H.
Flame is evaluated based on the Microsoft Azure function invo-

cation trace, and it can be configured with different server cache
capacity for each workload arrival pattern from the trace.

A.2 Artifact check-list (meta-information)
• Algorithm: A hotspot detection algorithm and a hotspot-aware cache
scheduling algorithm.
• Program: Benchmarks from SeverlessBench and FunctionBench were
used to evaluate Flame.
• Data set: The data set consists of 8 different Microsoft Azure serverless
function traces. Each trace provides 2 weeks of serverless invocation
data from 384 functions. From this trace, per function invocation arrival
timestamp, per function instance memory usage, per function startup
time and invocation time are obtained.
• Compilation: Java 1.8.0_333.
• Run-time environment: Ubuntu 16.04.
• Hardware: Intel x86 servers connected via 10 Gbps, full-bisection
bandwidth Ethernet.
• Metrics: Coldstart ratio, and cache resource usage are the major metrics
of evaluation.
• Output: Overall coldstart ratio and keep-alive cost. Along with these,
the number of per function cached instances and cache resource usage
timeline are also recorded in the system log files.
• Experiments: The experiments measure the overall coldstart ratio and
cache resource usage per competing techniques. In our evaluation, we
have experimented with the 5 different competing techniques under
the server memory configurations for all 8 workload traces. The server
memory configurations are chosen to maintain an equal capital cost
across all of them.
• How much disk space required (approximately)?: 10 GB.
• How much time is needed to prepare workflow (approximately)?:
30 minutes.
• How much time is needed to complete experiments (approxi-
mately)?: About 1 hour per workload trace, a total of 10+ hours.
• Publicly available?: Yes.
• Archived (DOI)?: https://zenodo.org/record/8398112.

A.3 Description
A.3.1 How to access. The source code, scripts, and instructions are
available on Zenodo: https://doi.org/10.5281/zenodo.8398112.

A.4 Evaluation
Users need to prepare a local testbed with Linux operating system
(e.g., Ubuntu 16.04), and download the source code and scripts from
Github to the server. The base workspace is named cacheResearch.
The following is the directory structure of the source code, scripts,
and instructions:

• README.md This file has detailed instructions to conduct
experiments.
• sourceCode The source code of Flame for CacheManager and
Cachelet.
• cacheTrace The workload trace files in Flame’s evaluation.
• workspace The workspace of Flame’s evaluation, which con-
tains the compiled binary files of Flame’s, the scripts to launch
Flame’s CacheManager and Cachelet, the scripts to start Flame’s
evaluations, and the scripts to display the comparison results of
Flame.
• coldstartRate The evaluation results of Flame’s competing
techniques.

Installing Flame: After downloading the source code and scripts,
users can choose to manually compile the source code of Flame’s
CacheManager and Cachelet. For easy-to-use, we provide the com-
piled binary files of Flame’s core components, these runnable files
(.jar) can be listed as following commands:

$ mkdir /home/tank/1_yanan/ && cd /home/tank/1_yanan/
$ git clone http://github.com/Flame/cacheResearch/
$ cd cacheResearch/workspace/
$ ls
...
cacheLoadGen_linux_flameManual.jar
cachelet-linux.jar
cacheManager-linux.jar
result.jar
start-flame.sh
...

Launching Flame: Then, using the following commands to launch
Flame system and conduct the evaluations:

$ source /etc/profile
$ sh start-flame.sh 23040 a rehash 300000 0.5f
............... Evaluation start ................
1000 0.1%
2000 0.2%
...
3110000 99.9%
1921s rehash
............... Evaluation stopped ................
The start-flame.sh file is the script to launch an experiment of

Flame’s cache management. It requires five parameters, including
the server memory configuration, the trace type, the load balanc-
ing policy, the keep-alive time for non-hotspot functions, and the
hotspot region size.

We can change the input parameters to evaluate Flame’s effec-
tiveness under different workload traces (a-h). For example,

• sh start-flame.sh 23040 a rehash 300000 0.5
• sh start-flame.sh 50176 b rehash 300000 0.5
• sh start-flame.sh 81920 c rehash 300000 0.5
• ...
• ...
• sh start-flame.sh 38912 h rehash 300000 0.5

When the experiment finishes, the evaluation result of Flame is
recorded in directory ’.../cacheResearch/coldstartRate/temp/’, user

165

https://zenodo.org/record/8398112
https://doi.org/10.5281/zenodo.8398112


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

Table 5: Applications in the benchmark pool.

ID Source Function Memory Pamamter Execution Time (ms) Startup Time (ms)
min avg max min avg max

1 ServerlessBench paralle-alu 128MB-1536MB loop_time=[10,100,1000,10000]
parallism=[1,2,4] 10 233 999 2103 2133 3586

2 ServerlessBench key-downloader 128MB-1024MB file_size=[512,1024,4096] 16 22 32 2171 2402 2749
3 ServerlessBench extract-image-metadata 128MB-1536MB input=imagenet_file 37 80 188 2200 2485 2673
4 ServerlessBench store-image-metadata 128MB-2048MB input=imagenet_file 174 311 731 2430 2744 3240
5 ServerlessBench thumbnail 128MB-1792MB input=imagenet_file 258 475 1127 2660 2973 3370
6 ServerlessBench tail-bigparam 128MB-10240MB dataset=[200000,1000000,5000000] 65 638 1774 2312 3047 3972

7 FunctionBench chameleon 128MB-8192MB cols=[100,200,500,1000]
rows=[100,200,500,1000] 55 1878 7213 2176 4315 9732

8 FunctionBench float-operation 128MB-1536MB loop_time=[10000,100000,1000000,10000000] 8 2351 16889 2115 4762 19059
9 FunctionBench linpack 256MB-8192MB array_len=[200,1000] 61 2031 12664 2417 4485 15134
10 FunctionBench matmul 128MB-2048MB mat_dim=[20,50,100] 4 162 570 2307 2663 3237

11 FunctionBench pyaes 128MB-2048MB msg_len=[200,500,1000]
iterations=[20,50,100] 877 1437 3412 3120 3943 5861

12 FunctionBench dd 128MB-1536MB block_size=[1024,2048,4096]
count=[256,512,1024] 45 62 105 2183 2445 2693

13 FunctionBench giz-compress 128MB-1792MB file_size=[1024,4096,8192] 63 480 1898 2395 3010 4433

14 FunctionBench random-diskio 128MB-1792MB file_size=[1024,4096]
block_size=[128,256,512] 103 155 291 2267 2628 2943

15 FunctionBench image-process 256MB-8192MB input=imagenet_file 2134 2843 6712 4311 5299 9286
16 FunctionBench image-rotate 256MB-4096MB input=imagenet_file 545 750 1709 2743 3172 3978
17 FunctionBench image-scale 256MB-4096MB input=imagenet_file 1723 2263 5090 3836 4749 7710
18 FunctionBench cnn-image-classification 256MB-2560MB input=imagenet_file 51 203 601 1774 2216 3979

19 FunctionBench video-process 128MB-2048MB dpi=[1280x720]
video_size=[1024,2560,3042] 2023 5076 14892 4363 7502 17511

20 FunctionBench lr-prediction 256MB-2048MB data_size=[2,5,10,20] 72 139 230 1733 3001 6838
21 FunctionBench face-detection 256MB-2560MB video_size=[256,512,1024] 569 1150 2801 2189 2868 3901

22 FunctionBench rnn-generate-char-level 256MB-2560MB lang=[English,German]
input_len=[20,50,80,100] 5 270 1864 1007 1356 3551

should first collect the results of Flame in specific directory using
the following commands:

$ cd ../coldstartRate/temp/
$ mv *csv Flame/rehash/

Comparison Result: We have conducted the evaluation results
of four competing techniques (CHRLU, FaasCache, Icebreaker and
Keepalive) in directory ’coldstartRate/temp/’, each of them is stored
in a separated fold which is named by their system names. User
can use the following commands to compare the cache efficiency
of the competing systems:

$ java -jar result.jar a 23040
Evaluation Output:
———————–
Keepalive policy:
# of Requests CacheUsage (MB) ColdstartRate
xxx xxx xxx
FaasCache policy:
# of Requests CacheUsage (MB) ColdstartRate
xxx xxx xxx
...
Flame policy:
# of Requests CacheUsage (MB) ColdstartRate
xxx xxx xxx

A.5 Related Materials
Available benchmarks: https://github.com/ykiauz/Flame/tree/main/
benchmark

B MATERIALS
B.1 Benchmarks
As we cannot directly use the user’s real-world business function
code from the production system, we collect 22 serverless bench-
marks from ServerlessBench and FunctionBench and build a large
set of serverless functions to evaluate Flame’s cache efficiency. By
configuring these benchmark applications with different memory
sizes and input parameters, we are able to generate a total of 384
functions with diverse workload behaviors. Table 5 summarizes
these functions and their configurations. The table has 22 rows and
11 columns. Each row represents an individual benchmark applica-
tion in the benchmark pool and the different configurations used
in its variants, including their memory size and input parameters.
We also show the execution times and start times of the variants,
which cover a wide range of latencies.

We use Azure’s function traces to generate production-like work-
load arrival patterns. Since the raw traces do not contain func-
tion code, we deploy 384 variants and generate requests towards
them following Azure request arrival timestamps. The memory
usage and execution time per request are also replaced with the

166

https://github.com/ykiauz/Flame/tree/main/benchmark
https://github.com/ykiauz/Flame/tree/main/benchmark


Flame: A Centralized Cache Controller for Serverless Computing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

actual values of the variants. The real benchmarks are available at
https://github.com/ykiauz/Flame/tree/main/benchmark.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-
weight Virtualization for Serverless Applications. In 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA, USA,
February 25-27, 2020, Ranjita Bhagwan and George Porter (Eds.). USENIX Associ-
ation, 419–434. https://www.usenix.org/conference/nsdi20/presentation/agache

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, Haryadi S. Gunawi and
Benjamin Reed (Eds.). USENIX Association, 923–935. https://www.usenix.org/
conference/atc18/presentation/akkus

[3] Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaSnap: FaaS made
fast using snapshot-based VMs. In EuroSys ’22: Seventeenth European Conference
on Computer Systems, Rennes, France, April 5 - 8, 2022, Yérom-David Bromberg,
Anne-Marie Kermarrec, and Christos Kozyrakis (Eds.). ACM, 730–746. https:
//doi.org/10.1145/3492321.3524270

[4] Cliff Click and John Rose. 2002. Fast subtype checking in the HotSpot JVM.
In Proceedings of the 2002 Joint ACM-ISCOPE Conference on Java Grande 2002,
Seattle, Washington, USA, November 3-5, 2002, José E. Moreira, Geoffrey C. Fox,
and Vladimir Getov (Eds.). ACM, 96–107. https://doi.org/10.1145/583810.583821

[5] Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu.
2009. Forward Decay: A Practical Time Decay Model for Streaming Systems.
In 2009 IEEE 25th International Conference on Data Engineering. 138–149. https:
//doi.org/10.1109/ICDE.2009.65

[6] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond Startup for Serverless
Computing with Initialization-less Booting. In ASPLOS ’20: Architectural Support
for Programming Languages and Operating Systems, Lausanne, Switzerland, March
16-20, 2020, James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 467–481.
https://doi.org/10.1145/3373376.3378512

[7] Jim Esch. 2015. Software-Defined Networking: A Comprehensive Survey. Proc.
IEEE 103, 1 (2015), 10–13. https://doi.org/10.1109/JPROC.2014.2374752

[8] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping serverless
computing alive with greedy-dual caching. In ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Virtual Event, USA, April 19-23, 2021, Tim Sherwood, Emery D. Berger,
and Christos Kozyrakis (Eds.). ACM, 386–400. https://doi.org/10.1145/3445814.
3446757

[9] Alexander Fuerst and Prateek Sharma. 2022. Locality-aware Load-Balancing
For Serverless Clusters. In HPDC ’22: The 31st International Symposium on High-
Performance Parallel and Distributed Computing, Minneapolis, MN, USA, 27 June
2022 - 1 July 2022, Jon B. Weissman, Abhishek Chandra, Ada Gavrilovska, and
Devesh Tiwari (Eds.). ACM, 227–239. https://doi.org/10.1145/3502181.3531459

[10] Google Cloud Function. [n. d.]. https://cloud.google.com/functions/. Referenced
2022.

[11] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidambaram
Nachiappan, Mahmut Taylan Kandemir, and Chita R. Das. 2020. Fifer: Tackling Re-
source Underutilization in the Serverless Era. InMiddleware ’20: 21st International
Middleware Conference, Delft, The Netherlands, December 7-11, 2020, Dilma Da
Silva and Rüdiger Kapitza (Eds.). ACM, 280–295. https://doi.org/10.1145/3423211.
3425683

[12] gVisor: Application Kernel for Containers. [n. d.]. https://gvisor.dev/. Referenced
2022.

[13] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of Workloads
for Serverless Cloud Function Service. In 12th IEEE International Conference on
Cloud Computing, CLOUD 2019, Milan, Italy, July 8-13, 2019, Elisa Bertino, Carl K.
Chang, Peter Chen, Ernesto Damiani, Michael Goul, and Katsunori Oyama (Eds.).
IEEE, 502–504. https://doi.org/10.1109/CLOUD.2019.00091

[14] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021. Faast-
lane: Accelerating Function-as-a-Service Workflows. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021, Irina Calciu and Ge-
off Kuenning (Eds.). USENIX Association, 805–820. https://www.usenix.org/
conference/atc21/presentation/kotni

[15] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021. Faast-
lane: Accelerating Function-as-a-Service Workflows. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021, Irina Calciu and Ge-
off Kuenning (Eds.). USENIX Association, 805–820. https://www.usenix.org/
conference/atc21/presentation/kotni

[16] Kubernetes. [n. d.]. http://k8s.io. Referenced 2022.
[17] AWS Lambda. [n. d.]. https://aws.amazon.com/lambda/?nc1=h_ls. Referenced

2022.

[18] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo
Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2022. Help Rather Than Re-
cycle: Alleviating Cold Startup in Serverless Computing Through Inter-Function
Container Sharing. In 2022 USENIX Annual Technical Conference, USENIX ATC
2022, Carlsbad, CA, USA, July 11-13, 2022, Jiri Schindler and Noa Zilberman
(Eds.). USENIX Association, 69–84. https://www.usenix.org/conference/atc22/
presentation/li-zijun-help

[19] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David J. Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: library operating systems for the cloud. In Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2013, Houston, TX,
USA, March 16-20, 2013, Vivek Sarkar and Rastislav Bodík (Eds.). ACM, 461–472.
https://doi.org/10.1145/2451116.2451167

[20] Anup Mohan, Harshad S. Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren
Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for Scalable Serverless. In
11th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2019, Renton,
WA, USA, July 8, 2019, Christina Delimitrou and Dan R. K. Ports (Eds.). USENIXAs-
sociation. https://www.usenix.org/conference/hotcloud19/presentation/mohan

[21] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK: Rapid Task
Provisioning with Serverless-Optimized Containers. In 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
Haryadi S. Gunawi and Benjamin Reed (Eds.). USENIX Association, 57–70.
https://www.usenix.org/conference/atc18/presentation/oakes

[22] OpenFaas. [n. d.]. https://docs.openfaas.com/. Referenced 2022.
[23] Docker pause. [n. d.]. https://docs.docker.com/engine/reference/commandline/

container_pause/. Referenced 2020.
[24] Apache OpenWhisk: Open Source Serverless Cloud Platform. [n. d.]. https:

//openwhisk.apache.org/. Referenced 2022.
[25] AWS Lambda Price. [n. d.]. https://aws.amazon.com/cn/lambda/pricing/. Refer-

enced 2022.
[26] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: warming

serverless functions better with heterogeneity. In ASPLOS ’22: 27th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4 March 2022, Babak
Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch (Eds.). ACM, 753–767.
https://doi.org/10.1145/3503222.3507750

[27] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference, USENIX ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok
(Eds.). USENIX Association, 205–218. https://www.usenix.org/conference/atc20/
presentation/shahrad

[28] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. 2021. Benchmarking, analysis, and optimization of serverless function
snapshots. In ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, Tim Sherwood, Emery D. Berger, and Christos Kozyrakis (Eds.).
ACM, 559–572. https://doi.org/10.1145/3445814.3446714

[29] Keeping Functions Warm. [n. d.]. https://docs.aws.amazon.com/lambda/latest/
dg/lambda-concurrency.html. Referenced 2022.

[30] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang, Rong Chen, and
Haibo Chen. 2022. No Provisioned Concurrency: Fast RDMA-codesigned Remote
Fork for Serverless Computing. CoRR abs/2203.10225 (2022). arXiv:2203.10225
https://arxiv.org/abs:2203.10225

[31] Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi Liu, Haoyu Wang, Xin
Jin, and Xuanzhe Liu. 2022. LambdaLite: Application-Level Optimization for
Cold Start Latency in Serverless Computing. CoRR abs/2207.08175 (2022). https:
//doi.org/10.48550/arXiv.2207.08175 arXiv:2207.08175

[32] Wenfeng Xia, Peng Zhao, Yonggang Wen, and Haiyong Xie. 2017. A Survey on
Data Center Networking (DCN): Infrastructure and Operations. IEEE Commun.
Surv. Tutorials 19, 1 (2017), 640–656. https://doi.org/10.1109/COMST.2016.2626784

[33] Mahendra Pratap Yadav, Nisha Pal, and Dharmendra Kumar Yadav. 2021. A
formal approach for Docker container deployment. Concurr. Comput. Pract. Exp.
33, 20 (2021). https://doi.org/10.1002/cpe.6364

[34] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,
Xingzhen Chen, and Keqiu Li. 2022. INFless: a native serverless system for
low-latency, high-throughput inference. In ASPLOS ’22: 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, 28 February 2022 - 4 March 2022, Babak Falsafi,
Michael Ferdman, Shan Lu, and Thomas F. Wenisch (Eds.). ACM, 768–781. https:
//doi.org/10.1145/3503222.3507709

[35] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing serverless platforms
with serverlessbench. In SoCC ’20: ACM Symposium on Cloud Computing, Virtual
Event, USA, October 19-21, 2020, Rodrigo Fonseca, Christina Delimitrou, and
Beng Chin Ooi (Eds.). ACM, 30–44. https://doi.org/10.1145/3419111.3421280

167

https://github.com/ykiauz/Flame/tree/main/benchmark
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3492321.3524270
https://doi.org/10.1145/3492321.3524270
https://doi.org/10.1145/583810.583821
https://doi.org/10.1109/ICDE.2009.65
https://doi.org/10.1109/ICDE.2009.65
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/JPROC.2014.2374752
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3502181.3531459
https://cloud.google.com/functions/
https://doi.org/10.1145/3423211.3425683
https://doi.org/10.1145/3423211.3425683
https://gvisor.dev/
https://doi.org/10.1109/CLOUD.2019.00091
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
http://k8s.io
https://aws.amazon.com/lambda/?nc1=h_ls
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://doi.org/10.1145/2451116.2451167
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/atc18/presentation/oakes
https://docs.openfaas.com/
https://docs.docker.com/engine/reference/commandline/container_pause/
https://docs.docker.com/engine/reference/commandline/container_pause/
https: //openwhisk.apache.org/
https: //openwhisk.apache.org/
https://aws.amazon.com/cn/lambda/pricing/
https://doi.org/10.1145/3503222.3507750
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3445814.3446714
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://arxiv.org/abs/2203.10225
https://arxiv.org/abs:2203.10225
https://doi.org/10.48550/arXiv.2207.08175
https://doi.org/10.48550/arXiv.2207.08175
https://arxiv.org/abs/2207.08175
https://doi.org/10.1109/COMST.2016.2626784
https://doi.org/10.1002/cpe.6364
https://doi.org/10.1145/3503222.3507709
https://doi.org/10.1145/3503222.3507709
https://doi.org/10.1145/3419111.3421280


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi Ma, and Keqiu Li

[36] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. 2021. Understand-
ing, predicting and scheduling serverless workloads under partial interference.
In SC ’21: The International Conference for High Performance Computing, Net-
working, Storage and Analysis, St. Louis, Missouri, USA, November 14 - 19, 2021,

Bronis R. de Supinski, Mary W. Hall, and Todd Gamblin (Eds.). ACM, 22:1–22:15.
https://doi.org/10.1145/3458817.3476215

168

https://doi.org/10.1145/3458817.3476215

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of Local Cache Control
	2.2 Implications

	3 Flame Design
	4 Hotspot-aware Cache Scheduling
	4.1 Dynamic Hotspot Detection
	4.2 Hotspot-aware Instance Scheduling
	4.3 Resource Allocation for Caching

	5 Implementation
	6 Evaluation
	6.1 Setup & Methodology
	6.2 Parameterizing Flame
	6.3 Overall Performance
	6.4 Sensitivity Analysis
	6.5 Overhead
	6.6 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Evaluation
	A.5 Related Materials

	B Materials
	B.1 Benchmarks

	References



