
Understanding, Predicting and Scheduling Serverless
Workloads under Partial Interference

Laiping Zhao
laiping@tju.edu.cn

State Key Laboratory of
Communication Content Cognition,

Colleage of Intelligence &
Computing(CIC), Tianjin University

Yanan Yang
ynyang@tju.edu.cn

CIC, Tianjin University, Tianjin Key
Lab. of Advanced

Networking(TANKLAB)

Yiming Li
l_ym@tju.edu.cn

CIC, Tianjin University, TANKLAB

Xian Zhou
logzx2019@tju.edu.cn

CIC, Tianjin University, TANKLAB

Keqiu Li
keqiu@tju.edu.cn

CIC, Tianjin University, TANKLAB

Abstract
Interference among distributed cloud applications can be
classified into three types: full, partial and zero. While prior
research merely focused on full interference, the partial in-
terference that occurs at parts of applications is far more
common yet still lacks in-depth study. Serverless computing
that structures applications into small-sized, short-lived func-
tions further exacerbate partial interference. We characterize
the features of partial interference in serverless as exhibiting
high volatility, spatial-temporal variation, and propagation.
Given these observations, we propose an incremental learn-
ing predictor, named Gsight, which can achieve high preci-
sion by harnessing the spatial-temporal overlap codes and
profiles of functions via an end-to-end call path. Experimen-
tal results show that Gsight can achieve an average error of
1.71%. Its convergence speed is at least 3× faster than that in
a serverful system. A scheduling case study shows that the
proposed method can improve function density by ≥18.79%
while guaranteeing the quality of service (QoS).

CCS Concepts: • Computer systems organization →
Cloud computing.

Keywords: Serverless, Partial Interference, Performance Pre-
diction, Resource Utilization
ACM Reference Format:
Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. 2021.
Understanding, Predicting and Scheduling Serverless Workloads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476215

under Partial Interference. In The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’21),
November 14–19, 2021, St. Louis, MO, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3458817.3476215

1 Introduction
Serverless computing has grown rapidly in recent years due
to its low-cost and management-free operation properties.
Many applications are being deployed in commercial server-
less platform [9, 10, 14, 22, 26, 39, 40, 48, 50]. We summarize
and categorize these applications into three dimensions (as
in Table 1): scheduled-background (BG), short-term computing
(SC) and latency-sensitive (LS).

In any category, the functions are usually small in
size and relatively short-lived. Small-sized functions in-
crease the colocating density. For example, AWS Lambda
configures each instance with only 0.125-3GB of memory
and 0.5GB of local storage [1]. A server with 256GB mem-
ory can accommodate hundreds of such functions. Short-
lived functions exacerbate the dynamicity of system runtime
states. These functions can be triggered by associated events
at any time and are released after completion. For example,
BG or LS functions usually process a request within seconds
or milliseconds. Even for SC applications that share similar
workloads with traditional serverful best effort tasks (BEs)
[33], their maximum processing times are also limited to 900
seconds with AWS Lambda [1].

High-density, highly dynamic serverless workloads make
it more challenging to colocate workloads with QoS guar-
antees (e.g., latency). First, while it is possible to isolate
traditional coarse-grained components from coscheduled
workloads using resource partitioning tools (e.g., Intel Cache
Allocation Technology (CAT), Memory Bandwidth Alloca-
tion (MBA)), the many small-sized functions in serverless
must share limited cores, memory bandwidth and LLC to
improve resource efficiency. This inevitably causes interfer-
ence. Second, the high dynamicity of functions likely make
resource allocation approaches that rely on reactive methods
(e.g., [6, 33, 34, 41, 44, 65]) less efficient by causing them to

https://doi.org/10.1145/3458817.3476215
https://doi.org/10.1145/3458817.3476215
https://www.acm.org/publications/policies/artifact-review-and-badging-current


SC ’21, November 14–19, 2021, St. Louis, MO, USA Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li

Table 1. Serverless workload survey. BG: Scheduled Back-
ground; SC: Short-term Computing; LS: Latency Sensitive

Description ServerlessExamples
BG triggered or scheduled intermittently, and needs to be

run from time to time without any latency requirements.
IoT data collection,
monitoring

SC minute-level processing times; millisecond changes in
completion times are trivial.

Bigdata[22, 26, 40],
linearAlge[50]

LS frequent invocations; millisecond increases in latency
lead to nontrivial user experience degradation.

Websearch[9], e-
com[39], SN[10]

miss the optimal tuning opportunities. For example, when a
reactive approach adds cache ways to the coscheduled func-
tions due to an observed increase in cache misses during the
previous time window, the actual LLC demand may instantly
decrease due to the release of functions therein.

Full

Interference

Partial

Interference

Zero

Interference

start start

start start

Func. of workload 1: Func. of workload 2:

Time

Time

Time

Figure 1. Various interference scenarios. Full indicates that
the workloads share the same server; Partial indicates that
the workloads intersect at partial servers; and Zero indicates
that there is no interference between workloads.

Current resource management capabilities in open source
serverless frameworks (e.g., OpenFaaS [42], OpenWhisk [43])
rely heavily on Kubernetes [27], which is a general frame-
work that does not provide explicit optimization for coloca-
tion and QoS guarantees. The traditional prediction-based
approaches (Table 2) that forecast mutual interference based
on workload profiles can be adapted into a serverless system
by treating each function as a separate application. However,
the diversity across a set of user functions makes the profil-
ing phase costly. Moreover, the accuracy of the predictions of
such approaches can be compromised by partial interference
(Figure 1): interference occurs only at some, but not all, of the
workloads. Compared with serverful workloads, small-sized
serverless functions are more prone to partial interference.
For example, scheduling 𝑛 functions of a single application
following the balancedResourceAllocation priority (i.e., a de-
fault scheduling policy in Kubernetes [28]) would spread
them across at most 𝑛 servers. The interference experienced
by any one of them may generate quite different impacts on
the overall performance, leading prior monolithic predictors
(e.g., [5, 11, 35]) that did not distinguish functions to failures.

In this work, we characterize the features of partial inter-
ference, which include the following: (1) High volatility:
Partial interference may either have a negligible impact on
the end-to-end QoS when it occurs on a noncritical path
or manifest an effect similar to full interference. (2) Spatial
variation: Two function call paths may intersect at arbitrary
locations. The number of partial colocations increases expo-
nentially with the number of servers and functions, resulting

in different levels of performance degradation due to the in-
consistent sensitivities of functions [65]. (3) Temporal varia-
tion: The different phase overlaps of two colocated functions
can also generate different types of partial interference, as
both the invocation frequency and run program segments
are time-varying. (4) Propagation: Although functions are
stateless in serverless, the impact on the overall QoS is not
equivalent to a simple summation of the partial interference
at each function, as hotspots propagate across dependent
functions [17]. Hence, we need to explore a holistic predic-
tion model that takes partial interference into account.
Although partial interference makes it difficult to predict

the QoS of colocated workloads, we also observe the pre-
dictability feature: diverse yet small-sized functions can
expose more information about the inherent workload struc-
ture, and rich details at the function level can help to improve
prediction accuracy. Given this finding, we present Gsight,
an accurate performance predictor for colocated serverless
workloads. Gsight identifies the temporality and spatiality of
partial interference and encodes both the “function-server
mappings” and the “time overlap” information in a predic-
tion model (§ 3.3). To reduce the profiling cost of diverse
functions, our approach only requires the solo-run profiles
of colocated functions and employs an incremental learning
model that can converge quickly using the accurate function
profiles. Gsight treats applications as black-boxes and uses
only system-layer and microarchitecture-layer metrics to
estimate performance degradation. Hence, it is application-
agnostic and can be used in public clouds where the admin-
istrator cannot monitor the application-level metrics.

In summary, we provide the following contributions:

• We observe the effects of partial interference among
colocated distributed workloads and characterize this
interference using spatial-temporal overlap coding.

• We observe that function-level profiling enables rapid
convergence and highly accurate prediction.

• We design a prototype, Gsight, that employs incremen-
tal learning to accurately predict the QoS for any colo-
cation of BG, SC and LS workloads. We demonstrate
its effectiveness via a scheduling use case.

• We present a detailed evaluation of Gsight and demon-
strate its high accuracy regarding performance predic-
tion and its significant resource utilization improve-
ment.

2 Understanding Partial Interference
In this section, we characterize partial interference, and eval-
uate how serverless workloads aggravate such interference.
MethodologyWe create multiple partial interference sce-
narios by colocating BG, SC and LS workloads arbitrarily to
study their impacts on application performance. As BG func-
tions usually have very lenient performance requirements,
we mainly study the tail latency and end-to-end average



Understanding, Predicting and Scheduling Serverless Workloads under Partial Interference SC ’21, November 14–19, 2021, St. Louis, MO, USA

compose-post

Function lifetime

tdelay

10

13

1

Server1

upload-text upload-urls

11

3 4

Server 2

upload-media upload-unique-id

2

5

Server 3

compose-and-upload

12

14

6

Server 4

upload-home-timelinepost-storage get-followers

7

8 9

Server 5

1 2 3 4 5

6 7 8 9

Func. of w.2: Func. of w.3:Func. of workload1:

Figure 2. Examples of function invocations. Workload 1(so-
cial network) consists of a message-posting request and in-
vokes 9 functions ( 1○- 9○); Workload 2 consists of 3 functions
( 10○- 12○); Workload 3 consists of 2 functions ( 13○- 14○).

instructions per cycle (IPC) of LS workloads and the job
completion times (JCTs) of SC workloads under partial in-
terference. We choose applications in FunctionBench [25] as
BG or SC functions, because their execution generally takes
several minutes (except float operation). For LS workloads,
we choose the social network in DeathStarBench [16] and
adapt it into serverless functions as in [61]. Figure 2 shows
an example function call path of message posting in the so-
cial network, which consists of nine functions over multiple
branches. All benchmarks are implemented and deployed on
OpenFaaS [42], an open source serverless framework.

2.1 Observations
Observation 1: High volatility: Serverless functions are di-
verse in terms of execution behavior and resource consumption,
making partial interference more volatile.

0.8

0.9

1.0

IP
C

30

50

70

9
9
%

il
e

2 4 6 8  2 4 6 8 2 4 6 8 2 4 6 8

SocialNetwork Function ID

0.2

0.4

0.6

C
o
V

dd video pro.iperfMatmul

(a) Partial interference scenarios

0  300 600 900
Timeline (s)

G1
G2
G3
G4
G5
G6
G7

G
ro

up
s

Delay KMeans LR

715

383

404

470
428

785

368

331

607
546

500
458

429
391

(b) Inter. at 6○compose-and-upload

Figure 3. (a): Both the 99𝑡ℎ percentile latency (ms) and IPC
of message-posting vary significantly under different partial
interferences. (b) The JCTs of colocated LogisticRegression
(LR) and Kmeans when they are started at different times.

Formulating an application into a collection of functions
enables the independent scheduling of each function. Their
independent deployment creates more partial interference
opportunities, as every function can be colocated with an-
other from an arbitrary application. Because of the diversity
of functions in terms of execution behaviors and resource
consumption, the partial interference can have quite different
impacts on performance, either as strong as full interference
or as weak as zero interference.

We select three microbenchmarks (matrix multiplication,
dd and iperf ) and one application (video processing) from
FunctionBench [25] and colocate them with every function
of the social network separately, generating 36 partial inter-
ference scenarios. In particular,matrix multiplication, dd and
iperf are CPU-intensive, disk I/O-intensive and network-
intensive applications, respectively. The video processing ap-
plication generates high pressure on CPU and memory and
medium pressure on disk I/O and network. Figure 3(a) shows
how the 99𝑡ℎ percentile latency, the coefficient of variance
(CoV) of the latencies and the IPC vary over the partial in-
terference scenarios. We see that the impact of partial inter-
ference exhibits higher volatility under different scenarios:
colocating matrix multiplication or video processing with so-
cial network decreases the IPC significantly, while iperf does
not impact IPC greatly due to its network-intensive nature.
The difference in 99𝑡ℎ percentile latency among these sce-
narios reaches 7×.
Observation 2: Spatial variation: Serverless functions are
small in size and stateless, making partial interference spatially
varied.

In terms of memory allocation, 90% of the Azure functions
never request greater than 400MB, and 50% of the application
runtime is allocated at most 170MB [49]. These small-sized
functions cause high-density deployment at each physical
server, inevitably aggravating partial interference. Moreover,
functions are stateless and spread over multiple machines in
the cluster, leading to various interference locations.

The end-to-end performance of a workflow varies signifi-
cantly even under the contention from the same workload
due to the inconsistent interference tolerance abilities of
functions (Figure 3(a)). For example, the colocation ofmatrix
multiplication with the 9○get-followers function generates
99𝑡ℎ percentile latency that is 3× higher than that obtained
with 1○compose-post. Furthermore, the end-to-end perfor-
mance relies on the function call path structure. Interference
on the critical path (e.g., 1○→ 2○→ 6○→ 8○→ 9○) generates a
much more severe impact than interference on the noncriti-
cal path (e.g., 3○, 4○, 5○, 7○). Hence, to provide SLA guarantees
under partial interference, the colocation scheme should be
aware of spatially-varied interference.
Observation 3: Temporal variation: Serverless functions are
short-lived, making partial interference temporally varied.

The characterization of Azure Function workloads shows
that 50% of the invocations are executed for less than 1 sec-
ond on average, and 96% of functions take less than 60 sec-
onds on average [49]. Short-lived functions cause colocated
functions to overlap in an arbitrarily short time period. Be-
sides, although the current Azure has a low invocation fre-
quency for many of their functions [49], we expect that the
overall invocation frequency will continue to rise as the
technology matures. These frequent, short invocations make
partial interference more temporally varied.



SC ’21, November 14–19, 2021, St. Louis, MO, USA Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li

To evaluate temporally-varied partial interference, we use
two additional SC workloads: Logistic Regression processes
4 million example data with a size of 15GB, and KMeans
clusters two partitions of 4 million points with a size of
15GB [30]. Both workloads employ 60 instances, and are
bound in the same socket. Figure 3(b) shows the timelines of
their executions with different start delays. In configurations
{𝑔1, ..., 𝑔7}, the start delay of KMeans gradually increases
from 0 to 360 seconds at a step size of 60 seconds. We see
that the JCT of LogisticRegression increases from 429 to 785
seconds from 𝑔1 to 𝑔4, implying that the later phase of the
map and the shuffle phase are more sensitive to interference.
In 𝑔5-𝑔7, the JCT of LogisticRegression becomes much smaller
as the time overlap becomes shorter. KMeans exhibits similar
performance, and the maximum difference in JCT is more
than 2×. Hence, to provide SLA guarantees under partial
interference, the colocation scheme should be aware of such
temporally-varied interference.

0.3

0.6

0.9

1.2

N
or

m
al

iz
ed

   
 9

9%
ile

1 2 3 4 5 6 7 8 9
SocialNetwork Function ID

0.3

0.6

0.9

1.2

N
or

m
al

iz
ed

   
   

 Q
P

S

Partial-interference
After restoration

(a) Inter. at 1○compose-post

0.3

0.6

0.9

1.2

1 2 3 4 5 6 7 8 9

SocialNetwork Function ID

0.3

0.6

0.9

1.2

(b) Inter. at 6○compose-and-upload
Figure 4. Performance changes achieved by all nine func-
tions under partial interference or after local control. (a):
Interference or control occurs at 1○compose-post. (b) Inter-
ference or control occurs at 6○compose-and-upload.

Observation 4:Hotspot propagation: Partial interference trig-
gers a chain reaction across the function call path and leads to
diametrically opposite effects.
We are surprised to observe that partial interference af-

fects the performance of functions in opposite ways: while
the performance of colocated functions is degraded by inter-
ference, the subsequent functions’ performance on the call
path instead improves. For example, Figure 4(a) shows that
all functions except 1○ have lower 99𝑡ℎ percentile latencies
after we create interference at function 1○. Likewise, when
function 6○ is interfered (Figure 4(b)), the 99𝑡ℎ percentile
latencies of the other functions become lower than before.

There are two reasons for this fact: (1) Interference causes
saturation in the colocated functions, resulting in increased
local latency. In a sequence chain, the queries per second
(QPS) of the subsequent invoked functions decreases due to
the waiting on blocking requests at the previous function.
Hence, their local latencies also decrease. In the case of a
nested chain [58], the hotspot propagates to its upstream
functions as the caller has to wait until the return of the

callees [16]. (2) Existing frameworks like OpenFaaS [42]
and OpenWhisk [43] share a same gateway design: all func-
tion invocations are received by a frontend gateway, and
then forwarded to independent backends where function
code executes. Managing the waiting queue of a saturated
function would consume many resources of the gateway,
thereby degrading the invocation speeds of all other func-
tions. Henceforth, the impact on functions 7○- 9○ is more
pronounced than that on 1○- 5○ (Figure 4(b)). The colocation
scheme should consider the end-to-end call path of each
invocation to guarantee SLA.
Observation 5: Restoring propagation: The local control of
partial interference suffers from impact propagation.

The dotted lines in Figure 4 also show how local isolation
control restores the latencies of all functions. After we move
the corunner to another server socket, not only the interfered
function (i.e., 1○compose-post in Figure 4(a) or 6○compose-
post in Figure 4(b)) but also the other functions have their
invocation frequencies restored. While local interference
control is helpful for decreasing the 99𝑡ℎ percentile latency
of the local function, the other functions’ latencies increase
due to the restored invocations.
Observation 6: Predictability: Accurate partial interference
prediction is enabled by function-level profiles, thereby improv-
ing the QoS of workloads.

KNN LR RFR SVR MLP

0

20

40

60

Pr
ed

. E
rr

or
 (%

)

(a) End-to-end ave. IPC
KNN LR RFR SVR MLP

0

100

200

300
v

Workload-level
Function-level

(b) 99%ile latency

50  250 450 650 
Latency (ms)

0

1

C
D

F

KNN
LR
RFR
SVR
MLP

(c) Actual latency

Figure 5. (a) and (b) violin plots show the probability density
of the prediction errors. For predicting IPCs or tail latencies,
function-level profiles produce much lower medians and vari-
ances than monolithic workload-level profiles. (c) Highly
accurate prediction improves the QoS of social network.

Formulating a complex workload into small functions ex-
poses the inner structures of the workload, and profiling at
the function-level also becomes easier due to the container-
ized deployment. Since function-level profiles keep much
richer execution information than workload-level profiles
[23], it becomes possible to build a performance predictor
that is both accurate and lightweight.

We compare the prediction accuracies achieved byworkload-
level and function-level profiling by feeding their profiles into
the same machine learning model. In particular, we train
the learning model using traces of multifunction workloads
(feature-generation [25] and e-commerce [36]), and evaluate
the prediction errors using social network. In workload-level
profiling, functions are integrated together into a single con-
tainer as a monolithic workload. Partial interference is gen-
erated by a random combination of the other workloads in



Understanding, Predicting and Scheduling Serverless Workloads under Partial Interference SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 2. A comparison between Gsight and previously developed methods. 𝐹𝑃𝑆 (frames per second) is a metric for games.𝑀 :
the number of LS workloads; 𝑁 : the number of SC/BG workloads. 𝐵: the number of microbenchmarks. 𝐶𝑆 : the number of
corunning workloads built from a training set. 𝐷 : the one-time cost for building the initial training dataset.

CLITE [45] GAugur [31] SMiTe [63] Prophet [5] 2-phase [64] Paragon [11] Bubbleup[35] Pythia [55] ESP [37] Gsight[this paper]

Resource
Multi-server ✔ ✔ ✔ ✔
Multi-dimensional Res. ✔ ✔ ✔ GPU ✔ ✔ ✔ ✔
Temporally-varied partial ✔
Spatially-varied partial ✔

Workload

> 2 workloads ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
LS+LS ✔ ✔ ✔
LS+SC/BG ✔ ✔ ✔ ✔ ✔ ✔
SC+SC/BG ✔ ✔ ✔ ✔ ✔
Functions ✔

Prediction
End-to-end model ✔
QoS metric - FPS IPC Time JCT Interference Time, th.p. IPC JCT IPC, JCT
Prediction error (%) - 5 1.79 5.1-5.9 0.3 5.3 0.7-2.2 3.4 > 3 1.67

Overhead Profiling cost ≤ 20(𝑀 + 𝑁 ) 𝐵 (𝑀 + 𝑁 ) 𝐵 (𝑀 + 𝑁 ) 𝑀 + 𝑁 𝐶𝑆 (𝑀 + 𝑁 ) 2(𝑀 + 𝑁 ) 𝐵𝑀 + 𝑁 𝐵𝑀 + 𝑁 𝑀 + 𝑁 𝐷 + (𝑀 + 𝑁 )
Date Year 2020 2019 2014 2017 2016 2013 2011 2018 2017 2020

FunctionBench [25]. All training data are collected once per
second for five minutes, following the design of our Gsight
approach. Figure 5 shows violin plots of the distributions
of the prediction errors yielded by various learning mod-
els (including K-Nearest Neighbor (KNN) Regression, Logis-
tic Regression (LR), Random Forest Regression (RFR), Support
Vector Regression (SVR), and a Multi-layer Perceptron Neural
Network (MLP)). As shown, whether predicting IPCs or tail
latencies, the predicting models trained using function-level
profiles produce an average median that is 2× lower than
that obtained using workload-level profiles. Their maximal
difference can reach 4×. Furthermore, function-level profile-
based predicting is more stable. Its variance is on average 13×
(up to 42×) lower than that of workload-level profiling. An
accurate predicting model enables better QoS during actual
execution. Figure 5(c) shows that under the same settings as
those in § 6, our Gsight employing RFR generates a much
lower the 99th percentile latency than the others.

2.2 Implications
Performance prediction for serverless workloads is chal-
lenged by highly volatile partial interference (Observation
1). To provide an accurate prediction, the utilized prediction
method should be able to address the observations above.
First, it should harness the spatially- and temporally-varied
overlap among functions for predicting (Observations 2
and 3). Second, it should be a holistic method that captures
the end-to-end performance variation caused by partial inter-
ference (Observations 4 and 5). Third, it should exploit the
profiles of functions extensively to achieve high precision
(Observation 6).

Prior work on predictors focused on full interference and
serverful workloads (Table 2), but the features of partial
interference were left unaddressed. Applying such predictors
directly to serverless workloads would produce considerable
errors (§ 6). While reactive approaches of job scheduling
and resource allocation suffer due to the high dynamicity of
functions, it would be particularly desirable to have a novel
predictor for serverless workloads.

3 Predicting with Gsight
3.1 Design
The insight of Gsight is that the QoS prediction ac-
curacy under partial interference can be significantly
improved through a “spatial-temporal interference”-
aware incremental learningmodel, which can converge
quickly by training on the profiles of functions along
an end-to-end call path.

Co-locating

Solo-run
Learning

Model

Profiles

Profiles

Perf. labelsCompute

Compute

Compute

Profiles

.. 

Serverless System

Offline Training Online Predicting

UserCompute

Predict Schedule

Monitor

Incremental
update

Partial code

Figure 6. The design of Gsight. The learning model takes
function profiles on the request call path and the partial in-
terference code as input and produces QoS prediction results.

Figure 6 highlights the design overview of Gsight. The
core of the predictor is an incremental learning model➍,
which is trained by learning on both offline data(➋➌) and
sequentially-available online data(➒➓). The incremental learn-
ing method can continuously improve the prediction accu-
racy during system operation; thus, it is particularly suitable
for production systems. However, a less-trained model in the
initial stage would generate poor predictions (i.e., “under-
fitting"). We mitigate this problem using accurate function-
level profiles and an elaborately designed predicting model.
First, each function of each workload is characterized un-
der its solo-run➊, generating a profile➋ containing both
system-layer and microarchitecture-layer metrics. Then, the
workloads are colocated under partial interference to gener-
ate performance labels➌. Each partial interference scenario
corresponds to a partial interference code, which consists of



SC ’21, November 14–19, 2021, St. Louis, MO, USA Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li

two vectors capturing the spatial overlap and temporal over-
lap among functions. In particular, the spatial overlap vector
indicates the codeployment locations of functions, and the
temporal overlap vector represents the time overlap among
functions. Function-level profiles, the partial interference code
and labels constitute the initial training dataset.

In the online phase, after a user submits a new serverless
workload➎, we first profile its functions under a solo-run➏.
Then, the scheduling algorithm➑ searches for its optimal
placement by calling the prediction model➐ iteratively. In
each iteration, the prediction model➐ infers its QoS by tak-
ing the solo-run profiles of all workloads and their partial
interference codes. After the functions are deployed in the
system, the real performance of the system is monitored➒
and is used to update the learning model incrementally➓.

3.2 Profiling
Interference profiling can be conducted in two ways: the
pairwise colocating way measures the direct interference
between two colocated workloads in terms of how much the
QoSmetric degrades [33]; themicrobenchmark way colocates
tailored microbenchmarks with functions for testing their
sensitivity [31, 35, 55], then estimates the QoS based on the
obtained microbenchmarking results. However, due to their
high profiling costs, neither of them is adopted by Gsight. We
instead design a solo-run way that collects the runtime status
information of functions on dedicated physical servers and
estimates the interference based on their resource utilization
profiles. Although the solo-run way does not characterize the
interference directly, (1) it avoids the profiling cost generated
by pairwise co-locations or microbenchmarks, thus reducing
the profiling overhead significantly; (2) a high prediction
precision can be achieved by the elaborate design of the
prediction model and the accurate function-level profiles.
We adopt a non-intrusive method that only monitors the

system-layer andmicroarchitecture-layer metrics of the appli-
cation and does not require instrumentation or modifications
to application source code. In the system layer, we collect not
only the configurations of resource allocation but also their
actual utilization ratios, including the number of CPU cores,
memory, network, memory bandwidth, and disk I/O. In the
microarchitecture layer, we record the instruction execution-
related measures of the CPU, which represent the execution
status of the workload. In particular, we consider two impor-
tant factors in the system design: parallelism and locality.
Parallelism includes instruction-level-parallelism (ILP) and
memory-level-parallelism (MemLP), where ILP measures the
efficiency of the pipeline, and MemLP is a measure of the
efficiency of concurrent access such that a higher MemLP
value implies higher concurrency. The locality metric rep-
resents the locality of instructions and data measured by
cache misses, including the cache and translation lookaside
buffer (TLB). We collect the number of misses per thousand
instructions (MPKI).

1.1 1.3 1.5 1.7 1.9 2.1
IPC

100

300

500

700

99
%

ile
 (

m
s) Linear fitting

(a) Social network

0.3 0.5 0.7 0.9 1.1
IPC

0

60

120

180

99
%

ile
 (

m
s)

(b) E-commerce
Figure 7. The latency-IPC curve for LS services under vari-
ous partial interference.
To train the machine learning model, we further collect

the actual performance of workloads as labels for the training
dataset. For example, IPC and tail latency metrics are used
for LSes, and JCT metric is used for SCs. By creating partial
interference scenarios through varying the QPS of LS work-
loads and the temporal or spatial overlap among colocated
workloads (§ 6), we record the corresponding 99th percentile
latencies and IPCs and show their statistical relations in Fig-
ure 7. There exists a “knee” in the latency-IPC correlation
curve: the 99th percentile latency has a strong correlation
with the IPC after the knee but varies significantly before
that. This implies that a well-trained IPC prediction model
would also have high accuracy when predicting tail latency
after the knee but would perform differently before that the
knee. As the tail latency varies under the same configura-
tion and the IPC measurements are more immune to system
noise [24, 55, 57, 63], our evaluations in § 6 show that the
prediction model achieves higher accuracy for the IPC than
the tail latency, and the tail latency prediction error falls
from 28.6% to 18.7% after removing low IPC samples.
Table 3. Correlation between metrics and performance

Metric Pearson Spearman Metric Pearson Spearman
Branch MPKI -0.60 -0.72 L1I MPKI 0.38 0.45

Context-switches 0.96 0.96 L2 MPKI 0.54 0.81
MLP 0.02 -0.03 L3 MPKI 0.54 0.78

L1D MPKI -0.37 -0.56 DTLB MPKI -0.75 -0.85
ITLB MKPI -0.38 -0.54 IPC 0.85 0.89

CPU utilization 0.81 0.82 LLC 0.83 0.84
Memory utilization 0.11 0.19 Memory IO 0.04 0.05
Network bandwidth 0.94 0.94 Disk IO 0.08 0.08

transmit(TX) -0.16 -0.19 CPU frequency -0.57 -0.68
receive(RX) -0.60 -0.61 - - -

Incorporating all the available systems and microarchitec-
ture metrics into the model is problematic because irrelevant
metrics can easily result in overfitting, causing the model to
convey poor accuracy. Moreover, a large number of input
dimensions also leads to a long prediction time. Thus, per-
formance metrics that are highly correlated with inherent
characteristics or interference must be used. To do so, we
use the Pearson Correlation Coefficient [2] and Spearman Cor-
relation Coefficient [47] to evaluate the correlations between
the target QoS and the performance metrics. The larger each
coefficient is, the more the metrics are correlated with the
performance. As shown in Table 3, we list the average corre-
lations between the metrics and performance separately, and
for conducted experiments, we exclude the ones with abso-
lute correlation values less than 0.1. Finally, we choose the
remaining 16 metrics as the inputs for the incremental learn-
ing model. For a distributed workload consisting of multiple
functions, we collect the measures of all its functions.



Understanding, Predicting and Scheduling Serverless Workloads under Partial Interference SC ’21, November 14–19, 2021, St. Louis, MO, USA

3.3 Incremental Learning
An accurate prediction model can be obtained after conduct-
ing training with a sufficient number of samples. However,
the collection of a large number of traces (including both the
solo-run profiles and the corun labels) at the beginning is dif-
ficult. It is also not feasible to learn a prediction model in just
one training step due to the continuous evolution of work-
loads. To solve the problem, we adopt the online incremental
learning method for training the prediction model: we first
prepare a small dataset of workload metrics and their corun
QoS. We train the learning model using this dataset and use
it for performance prediction thereafter. During the execu-
tion period, we extend the dataset with the newly generated
metrics and their actual corun QoS repeatedly. The learn-
ing model is updated by the new data for better prediction
accuracy.
We design a regression model (denoted by 𝑅𝑀), which

can predict the QoS of an arbitrary number of colocated
workloads under partial interference. The model for predict-
ing application 𝐴’s performance under the interference of
𝐵,𝐶, ... (i.e., 𝑃𝐴∪{𝐵,𝐶,...}) is described as follows:

𝑃𝐴∪{𝐵,𝐶,...} = 𝑅𝑀 (𝑅𝐴, 𝑅𝐵, 𝑅𝐶 , ...︸            ︷︷            ︸
𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑅𝑒𝑠

,𝑈𝐴,𝑈𝐵,𝑈𝐶 , ...︸            ︷︷            ︸
𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

,

𝐷𝐴, 𝐷𝐵, 𝐷𝐶 , ...︸             ︷︷             ︸
𝐷𝑒𝑙𝑎𝑦

,𝑇𝐴,𝑇𝐵,𝑇𝐶 , ...︸          ︷︷          ︸
𝐿𝑖𝑓 𝑒𝑡𝑖𝑚𝑒

), (1)

where (𝑅𝐴, 𝑅𝐵, 𝑅𝐶 , ...) represents the resource allocation vec-
tors configured for theworkloads (𝐴, 𝐵,𝐶, ...), (𝑈𝐴,𝑈𝐵,𝑈𝐶 , ...)
denotes the actual utilization ratios of various resources and
performance monitoring counters collected in the system
layer andmicroarchitecture layer as in Table 3, (𝐷𝐴, 𝐷𝐵, 𝐷𝐶 , ...)
is a start delay vector, and (𝑇𝐴,𝑇𝐵,𝑇𝐶 , ...) represents the life-
time lengths of solo-run SC/BG workloads, which are set to
0 when utilizing LS workloads.
Temporal overlap coding: The start delay vector (𝐷𝐴, 𝐷𝐵 ,
𝐷𝐶 , ...) codes the time overlap among workloads. In partic-
ular, we have 𝐷𝐴 = 0, and (𝐷𝐵, 𝐷𝐶 , ..) represents the start
delay of workload (𝐵,𝐶, ....) compared to that of 𝐴. That is,
workload 𝐴 is ahead of 𝑖 at time 𝐷𝑖 if 𝐷𝑖 > 0, ∀𝑖 ∈ {𝐵,𝐶, ....},
or |𝐷𝑖 | later than 𝑖 if 𝐷𝑖 < 0, ∀𝑖 ∈ {𝐵,𝐶, ....}.
For the example in Figure 2, since workload #2 is ahead

of workload #3 with respect to 𝑡𝑑𝑒𝑙𝑎𝑦 , we have the following
temporal overlap code for workloads #2 and #3: (𝐷2, 𝐷3) =
(0, 𝑡𝑑𝑒𝑙𝑎𝑦).
Spatial overlap coding: Both 𝑅𝑖 and𝑈𝑖 (∀𝑖 ∈ {𝐴, 𝐵,𝐶, ...})
are two-dimensional vectors that are specially designed for
incorporating the spatial overlap information among appli-
cation functions. In particular, we have:

𝑈𝑖 =

�������
𝑢1
𝑖1 𝑢2

𝑖1 ... 𝑢16
𝑖1

𝑢1
𝑖2 𝑢2

𝑖2 ... 𝑢16
𝑖2

... ... ... ...

𝑢1
𝑖𝑆

𝑢2
𝑖𝑆

... 𝑢16
𝑖𝑆

������� , (2)

where 𝑆 denotes the number of servers in the system, and𝑢𝑘
𝑖𝑙

(1 ≤ 𝑙 ≤ 𝑆, 1 ≤ 𝑘 ≤ 16) represents the 𝑘th metric collected
for 𝑖’s function on server 𝑙 . If there exists no function on
𝑙 , then (𝑢1

𝑖𝑙
, 𝑢2

𝑖𝑙
, ..., 𝑢16

𝑖𝑙
) are all set to 0s. Since all matrices of

𝑈𝑖 (∀𝑖 ∈ {𝐴, 𝐵,𝐶, ...}) have the same numbers of rows and
columns, functions from different workloads that share the
same number of rows are implied to be colocated on the
same server. In this way, we are able to encode the spatial
overlap in the prediction model. If there exists more than one
function located on the same server, we aggregate their met-
rics together, generating a “virtual larger function”. Likewise,
the vector 𝑅𝑖 is designed in the same way.����������

𝑢1
1,1 .. 𝑢16

1,1
𝑢1
1,{34} .. 𝑢16

1,{34}
𝑢1
1,{25} .. 𝑢16

1,{25}
𝑢1
1,6 .. 𝑢16

1,6
𝑢1
1,{789} .. 𝑢16

1,{789}

����������
(3)

���������
𝑢1
2,10 .. 𝑢16

2,10
𝑢1
2,11 .. 𝑢16

2,11
0 .. 0

𝑢1
2,12 .. 𝑢16

2,12
0 ... 0

��������� (4)

���������
𝑢1
3,13 .. 𝑢16

3,13
0 .. 0
0 .. 0

𝑢1
3,14 .. 𝑢16

3,14
0 ... 0

��������� (5)

For the three workloads in Figure 2, their spatial overlap
codes (𝑈1, 𝑈2, 𝑈3) are shown in Matrices (3-5), respectively.
As functions 1○, 10○ and 13○ are deployed on the same server
#1, they are all located in the first row vectors in𝑈1,𝑈2 and
𝑈3, respectively. Furthermore, since 3○ and 4○ of workload
#1 are deployed together on server #2, we simulate a virtual
function “{34}” andmeasure the average of eachmetric (out of
16). This is also applicable to “{25}” and “{789}”. The third and
fifth row vectors of𝑈2 are 0s because functions of workload
#2 are not deployed on server #3 and #5.

The prediction model has different forms for the different
combinations of LS, SC and BG workloads.
LS+LS workloads: If there are no BG and SC jobs involved
in the colocation process, we have 𝐷𝑖 = 0 and 𝑇𝑖 = 0
(∀𝑖 ∈ {𝐴, 𝐵,𝐶, ...}); because the LS workloads are invoked
repeatedly, the main interference factor is the QPS instead
of the start delay. Moreover, 𝑃𝐴∪{𝐵,𝐶,...} represents the IPC
or tail latency of 𝐴.
LS+SC/BG workloads: If both LS and SC (or BG) workloads
are present in the co-locating, then the start delay of the first
arriving SC (or BG) is set to 0, and the delays of the other
SCs (or BGs) are set by comparing their arrival times to the
first workload. Furthermore, we have 𝐷𝑖 = 0 and 𝑇𝑖 = 0 for 𝑖
belonging to LS workloads. For example, message-posting in
Figure 2 is an LS workload, and we have 𝐷1 = 0 and 𝑇1 = 0
for it.
SC+SC/BG workloads: If there are no LS workloads in-
volved in colocation, then we have that the start delay of
the first arriving SC (or BG) is equal to 0 and that 𝑇𝑖 ≠ 0
(∀𝑖 ∈ {𝐴, 𝐵,𝐶, ...}). Moreover, 𝑃𝐴∪{𝐵,𝐶,...} represents the JCT
of 𝐴.
BG+BG workloads: If there exists only BG workloads in
the colocating, we do not call the prediction model because
the performance requirements of BGs are lenient.

3.4 Learning Model
The prediction model can be constructed using either tra-
ditional machine learning (ML) or deep learning (DL) algo-
rithms. Although deep learning algorithms may yield higher
accuracy, they usually require many more training samples



SC ’21, November 14–19, 2021, St. Louis, MO, USA Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li

than traditional machine learning. Hence, we choose the
traditional ML approach, particularly Incremental RFR (IRFR),
to build our model, because RFR is simple, easy to implement
and suitable for various high-dimensional, various types of
continuous variables [7]. RFR is an ensemble model that
constructs a multitude of decision trees and combines their
outputs together for classification and regression [32]. It is
robust against the overfitting of the training data because
it incorporates randomness: each decision tree is trained
on a random subspace of the data, and only a random sub-
set features are selected. Our evaluations in § 6 show that
IRFR achieves high prediction accuracy (the error ≤ 1.71%),
outperforming the other representative machine learning al-
gorithms, including incremental KNN (IKNN) [8], incremental
LR (ILR) [29], incremental SVR (ISVR) [51], and incremental
MLP (IMLP) [19].We evaluate the impurity-based importance
of the 16 metrics in RFR model and find that in addition to
disk IO, all other metrics are informative (Figure 8).

Contex
tSwitc

h

L1I M
PKI

DTLB M
PKI

L2 M
PKI

bra
nch

 M
PKI

IT
LP M

PKI

M
em

 util.
%

L3 M
PKI

M
em

 IO LLC
M

LP

CPU util.
%

L1D M
PKI

IP
C

Disk
 IO

Input Features

0

0.02

0.04

0.06

Im
po

rt
an

ce Feature importance

Figure 8. The impurity-based importance of the 16 metrics.

4 Scheduling using Gsight
Wepresent a function scheduling case study to validate the ef-
fectiveness of Gsight. The scheduling algorithm aims to max-
imize resource efficiency by deploying function instances
on a minimum number of active servers while guaranteeing
the QoS of colocated workloads. This mechanism is acti-
vated whenever a new workload is submitted or a previously
submitted workload scales beyond the current function in-
stances. When the invocation load varies but does not yet
cause scaling-out operations, it is also possible to further
optimize resource efficiency by rescheduling the existing
instances.

Suppose that there are 𝑆 servers in the computing system,
and the newly arrivedworkload consists of𝑀 functions; then,
the maximum search space for deployment is 𝑆𝑀 . Although
Gsight’s inference efficiency is high, the brute force approach
that explores all possibilities in the search space is rather
time consuming, due to the largeness of the search space. Its
time complexity is 𝑂 (𝑃𝑆𝑀 ), where 𝑃 refers to the inference
time for a colocation setting. To reduce the scheduling time,
we design a binary search-based scheduling algorithm, which
attempts a half spatial overlap if the full overlap schedule
violates the SLA. Hence, it can reduce the time complexity
to 𝑂 (𝑀𝑃 log 𝑆). In each attempt, since it is still costly to
evaluate all the possible overlaps even with the constraint
of the half overlap, we instead check only one configuration

(i.e., by scheduling the function with maximum resource
requirements to the server with the most available resources)
to see if it can satisfy the SLA requirement.

5 Implementation
5.1 OpenFaaS Implementation
We implement Gsight and integrate it into OpenFaaS, an
event-driven serverless computing platform based on Ku-
bernetes [27]. Our framework adopts the controller-agent
architecture: a centralized Gsight controller is deployed in
the master node, and each slave node is equipped with a
Gsight agent. The Gsight controller is a submodule of the
OpenFaaS controller that monitors the function statuses and
makes scheduling decisions. It consumes around 0.4 cores
and 600MB of memory. Each Gsight agent collects the mi-
croarchitecture metrics yielded by function instances using
tools such as perf (Linux performance counters profiling)
and pqos-msr (Intel RDT Utility) and receives instructions
from the controller for allocating resources (e.g., CPU cores,
LLC, memory bandwidth).

5.2 Function Startup Latency
In serverless computing, a cold start happens when an inac-
tive function is invoked. The startup process for deploying
the function along with any dependencies it may have gen-
erates high latency for function execution. It also causes
resource contention on other colocated functions. To evalu-
ate such interference, we can just treat the startup process as
an ordinary phase of the function execution and the startup
profile is a part of the function profile. If an invocation expe-
riences a cold start, the predictor utilizes function profiles
containing the startup phase. Otherwise, if the cold start
is avoided by pre-warmed functions or customized guest
kernels [13], the predictor takes function profiles without
startup phase as input. In this way, the QoS can still be pre-
dicted accurately under the startup interference.

6 Evaluation
6.1 Methodology

Table 4. Experimental testbed configuration.
Component Specification Component Specification
CPU model Intel Xeon E7-4820v4 Shared LLC Size 25MB

Number of sockets 4 Memory Capacity 256GB
Processor BaseFreq. 2.00 GHz Operating System Ubuntu 14.04.5LTS

Threads 80 (40 physical cores) SSD Capacity 960GB
Private L1&L2 Cache 64 KB and 256 KB Number of Nodes 8

Testbed andWorkloads: Table 4 summarizes our testbed
platform used for evaluating Gsight. We use the workloads
in ServerlessBench [58] and FunctionBench [25] for evalua-
tion. As they were originally implemented on OpenWhisk
[43] or AWS Lambda [1], we redevelop and deploy them on
OpenFaaS[42]. Similar to [21, 61], we also port the social
network [16] and e-commerce [36] to OpenFaaS. Each mi-
croservice in social network (or e-commerce) is transformed
into one or more functions according to its features.



Understanding, Predicting and Scheduling Serverless Workloads under Partial Interference SC ’21, November 14–19, 2021, St. Louis, MO, USA

These services are triggered by dynamic invocations sim-
ulated using the production trace from the Azure Function
[49], where the invocations per hour illustrate diurnal and
weekly patterns. We observe that cold starts occur frequently
during the request load rises, i.e., an average of 8 cold starts
per minute are observed under our settings.
Competing Predicting and Scheduling Policies: Ta-

ble 2 shows previously developed interference prediction
methods. We compare Gsight with ESP [37] and Pythia [55]
because they are the state-of-the-art approaches, sharing the
same QoS metrics as ours. For the scheduling comparison,
while Pythia employs the Best Fit algorithm that places the
workload on the server with the smallest amount of head-
room, we further design aWorst Fit algorithm that always
schedules functions with maximum resource requirement to
the server with the maximum amount of available resources
until an SLA violation occurs.

(a) IPC (b) Tail latency

Figure 9. The prediction errors of (a) IPC and (b) tail latency.

0 10k 20k 30k
Number of samples

0

15

30

45

E
rr

or
 (

%
) IKNN

ILR
IRFR
ISVR
IMLP

(a) Serverful

0 3k 6k 9k
Number of samples

0

15

30

45

(b) Serverless (c) Multi-apps
Figure 10. The prediction error: (a) The incremental up-
dating process for serverful workloads. (b) The incremental
updating process for serverless workloads. (c) The distribu-
tion of prediction error under multiworkload colocations.

6.2 Prediction Error
The prediction error is defined as |𝑃 − 𝑃 |/𝑃 , where 𝑃 and 𝑃
denote the predicted QoS and the actual value, respectively.
Any slight decrease in prediction error would significantly
lower the amount of resources reserved for colocated work-
loads significantly, saving millions of dollars when building
a large-scale datacenter for cloud providers. Next, we investi-
gate how the learning model, workload types, function-level
profiles and number of colocated workloads affect the pre-
diction accuracy and convergence speed of Gsight.
High prediction accuracy: Gsight employing the IRFR
learning model is highly accurate in predicting the
performance of either LS or SC workloads.We first eval-
uate the prediction errors under different learning models
and workload colocations (including LS+LS, LS+SC/BG and
SC+SC/BG). Figure 9 shows the prediction errors with re-
spect to IPC (Figure 9(a)) and tail latency (Figure 9(b)) for

the various models. We make four main observations. First,
IRFR is the most suitable learning model for Gsight. While
the mean prediction errors of IKNN, IRFR and ISVR are less
than 6% in all experiments, the prediction error of IPC gener-
ated by IRFR is as low as 1.71% in the LS+BG/SC colocation,
outperforming the other models significantly. Second, Pythia
and ESP produce higher prediction errors than the others
in all experiments because Pythia is not able to handle the
propagation effect of partial interference, and ESP only uses
four microarchitecture metrics (i.e., the IPC, L2 access rate,
L3 access rate and memory bandwidth) during model train-
ing. Third, Gsight achieves high prediction accuracies in
all colocations. Even in the worst case (SC+SC/BG), IRFR’s
prediction error is still less than 5%. Fourth, it is more chal-
lenging to predict tail latency than IPC. Although Gsight is
more accurate than Pythia and ESP, its prediction error is
still 28.6% when predicting tail latency (Figure 9(b)).
Fast and stable convergence: Function-level profiles en-
able Gsight to converge quickly. Its precision is also
stable after convergence. To evaluate the convergence
speed, we train the same learning model using serverful and
serverless samples. In particular, serverful samples are gener-
ated at the workload-level by running serverful benchmarks
on our testbed, including Sparkbench [30], bigdatabench
[54], Redis [46], Apache Solr [3] and MongoDB [38]. We col-
lect 37,053 samples in total. Serverless samples are collected
at the function-level from serverless benchmarks.

We observe that Gsight converges much faster in a server-
less system than that in a serverful system. In particular, the
prediction errors in the serverless system after 1,000, 2,000,
and 3,000 samples are just 3.41%, 2.55% and 2.09%, respec-
tively, while they are 6.5%, 4.74% and 3.75% in the serverful
system (Figure 10(a)). Moreover, IRFR must be updated with
3500, 5450 and 7430 samples to achieve the same prediction
error as that obtained when trained with 1,000, 2,000, and
3,000 samples in a serverless system. Hence, function-level
profiles in a serverless system help to greatly improve the
convergence speed of Gsight, which is at least 3× faster than
in a serverful system. Figure 10(b) also shows that the pre-
diction errors produced by IRFR after 3,000 samples are kept
below 2.09%. It even approaches to 1% after 9,000 samples.
Hence, the precision is also stable after convergence.
The number of colocated workloads does not affect
the prediction precision of Gsight.We further evaluate
the prediction accuracy of Gsight by varying the number
colocated workloads. Figure 10(c) shows that an increase
in the number of workloads does not degrade the accuracy
much. The prediction error is always less than 3% in any
combinations. In particular, the average error even becomes
lower when colocating many LS+LS workloads.
We also evaluate how quickly Gsight will recover if the

workload drastically differs from the training data. We divide
the training data into two groups: I/O intensive (e.g., social



SC ’21, November 14–19, 2021, St. Louis, MO, USA Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li

network) and CPU intensive (e.g., ML serving). Figure 13
shows that IRFR trained using I/O intensive samples produces
an error of 43.9% for predicting the IPC ofCPU intensive, since
CPU intensive workloads are about 1.6× of the IPC of I/O
intensive ones. However, the error declines to 4.6% quickly
after the incremental update with 1,000 samples.

6.3 Scheduling Results
Gsight scheduling further improves the density ofwork-
loads in a high-density serverless system. Function den-
sity measures the number of function instances deployed per
core in the system. It dynamically changes with a varied in-
vocation load due to the autoscaling capability of OpenFaaS.
Figure 11(a) shows the CDF of the function density recorded
over time. We see that, benefiting from accurate predictions,
Gsight improves the function density by averages of 18.79%
and by 48.48% over those of Pythia and Worst Fit, respec-
tively. This demonstrates that Gsight is particularly suitable
for high-density serverless systems.

1 2 3 4
Density (inst./core)

0
0.2
0.4
0.6
0.8

1

C
D

F

Gsight
Pythia
Worst Fit

(a) Function density

0 20 40 60 80 100
CPU Util. (%)

0
0.2
0.4
0.6
0.8

1

C
D

F

(b) CPU utilization

0 20 40 60
Memory Util. (%)

0
0.2
0.4
0.6
0.8

1

C
D

F

(c) Memory utilization

Figure 11. Scheduling results in terms of function density,
CPU and memory utilization.

50 150 250 350

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Gsight

Pythia

Worst Fit

267ms

  SLA

(a) Social network

0 20 40 60 80 100

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

88ms SLA

(b) E-commerce
Figure 12. The CDF of 99th perce-
ntile latency for an LS workload.

0 250 500 750 1000

New Samples

0

10

20

30

40

50

P
r
e
d

. 
E

r
r
o

r
 (

%
)

43.9

11
4.6

14.7

26.8

37.1

Figure 13. Model
recovery under new
samples.

A higher function density leads to higher resource utiliza-
tion. Figure 11(b) shows that Gsight can improve CPU utiliza-
tion by 30.02% and 67.51% on average compared with that
of Pythia andWorst Fit, respectively. Likewise, Figure 11(c)
shows that Gsight can improve memory utilization by 31.04%
and 76.91% on average.
Gsight scheduling can guarantee the SLA of workloads.
For LS workloads, we define their SLAs based on the follow-
ing principle: each LS runs at its maximum allowable request
load without interference over 30 minutes, and we record the
99th percentile latency per second and set the average as the
SLA. For example, the 99th percentile latencies stated in
SLAs of social network and e-commerce are 267ms and 88ms,
respectively. As the IPC prediction model exhibits smaller
errors than the tail latency model in Figure 9, we adopt the
IPC model for scheduling by transforming the tail latency in
SLA into IPC according to their correlation curve (using the

average if there are multiple IPCs; Figure 7). Figure 12 shows
that Gsight still guarantees their SLAs 95.39% and 93.33%
of the time, respectively. This is because a weak guarantee
mainly occurs when the IPC is low, which is true for just 4.1%
of all samples (Figure 7). Note that Gsight is orthogonal to
the buffer-based or reactive-control tail latency optimization
approaches [6, 20, 65], which suggests that a stronger SLA
guarantee can be achieved when integrating them together.

6.4 Overhead and Scalability
Offline profiling cost: The solo-run way of profiling gen-
erates a cost of 𝑂 (𝐷 + (𝑀 + 𝑁 )), where 𝑀 represents the
number of LS workloads, 𝑁 represents the number of SC/BG
workloads, and 𝐷 is the one-time cost for building the initial
training dataset. We develop an open-loop load generator,
which can test each LS workload under various access loads
and generate profiles within 5 minutes. In a real system, the
profiling can also finish in a short time if using the load
generator. Otherwise, it would last one period (e.g., a day
in a diurnal pattern). Since LS workloads are invoked re-
peatedly, one profiling step for them can be reused for later
invocations. Each SC or BG is profiled by running it once in
a dedicated environment. Fortunately, the majority of BGs
and a large proportion of SCs ( ≥ 40% of bigdata applications
[15, 59]) are recurring. Collecting the initial training dataset
with 3,000 samples takes us less than 2 person-hours, includ-
ing deployment, monitoring, and training. In particular, the
training process takes only < 10 minutes.

10 20 50 100 200 400
# of Function Instances

0.01

1.0

100

T
im

e 
(s

)

Instance starting
Scheduling decision
Resource allocation
Invocation forwarding

Figure 14. The overhead
of the scheduling process.

The number of dimensions
in RM varies with the num-
ber of colocated workloads.
For training the IRFR model,
we simply fix the number of
workloads in 𝑃𝐴∪{𝐵,𝐶,...} as 𝑛,
i.e., the maximum allowable
colocations in the system. If
the actual colocations are less
than 𝑛, we use zeros to pad

out the values. As both the start delay vector and the lifetime
vector have 𝑛 dimensions, and both the resource allocation
vector and utilization vector have 16𝑛𝑆 dimensions, the over-
all number of dimensions of each piece of training data is
32𝑛𝑆 + 2𝑛. In our experiments, we set 𝑛 = 10.
Online running cost and scalability: The online sched-
uling process consists of four steps: invocation forwarding,
scheduling decision making, instance starting and resource
allocation. Figure 14 shows how the overhead increases with
the number of function instances. We see that the scheduling
decision making is highly efficient and only takes a few mil-
liseconds when scheduling different numbers of instances.
In particular, each inference takes an average of 3.48 millisec-
onds and each incremental update takes an average of 24.784
milliseconds. The most time is spent on starting instances.



Understanding, Predicting and Scheduling Serverless Workloads under Partial Interference SC ’21, November 14–19, 2021, St. Louis, MO, USA

Hence, it is necessary to accelerate the startup process to
improve the time efficiency (e.g., [13]). The invocation for-
warding module of OpenFaaS is stable and efficient when
the number of instances is less than 110, but slows down
rapidly after 120 instances due to the bottleneck of the gate-
way. Hence, a scalable gateway is also required for better
scalability (e.g., [21]).

In a large-scale system, the number of colocations experi-
enced by a workload is generally limited. For example, since
a vast majority of workflows contain fewer than 10 functions
[49], the number of physical servers on which a workflow
is deployed is also typically fewer than 10. In this case, the
number of dimensions (i.e., 32𝑛𝑆+2𝑛) of the predicting model
could be fewer than a few hundreds and Gsight can still have
a high predicting efficiency. In the worst case, if a workflow
consists of a lot of functions and spans over hundreds or
thousands of servers, Gsight may do not scale up well due to
the massive dimensions and scheduling search space. Poli-
cies like dimensionality reduction (e.g., PCA) and hierarchy
scheduling can be explored to improve Gsight in future work.

7 Related Work
Regarding serverful systems, interference has been studied
extensively, and predicting-based colocation can improve
resource utilization while guaranteeing the tail latency of LS
workloads. Table 2 summarizes prior approaches for predict-
ing workload performance under interference. These meth-
ods commonly rely on workload-level profiling to improve
the prediction precision. For example, the “sensitivity curve
transformation" methods (e.g., [35], [57], [63], [55], [31])
characterize interference sensitivity using microbenchmark
rulers. Quasar [12] uses collaborative filtering techniques
for prediction. Other predictors try to identify the specific
features that are relevant to performance, e.g., query-level
predictions [4], the number of cycles-per-instruction (CPI)
[62], and cluster utilization counters[56]. For predicting SC’s
performance under colocation, prior work evaluated inter-
ference at shared LLC, instruction execution units, I/O or
memory bandwidth [11, 18, 52] and employed techniques
such as collaborative filtering [11], statistical methods [53],
regression analysis [64], and machine learning [37, 60] to
predict slowdown. For colocated LS workloads, GAugur [31]
supports the efficient colocation of online games using a
machine learning-based prediction model.
In summary, prior work has explored the design space

of interference predictors. While they work well under full
interference, how to extend their approaches by considering
complex function call structures as well as partial interfer-
ence in a serverless system is still an unresolved problem.

8 Conclusions
In serverless computing, workloads continue to become in-
creasingly complex due to small-sized functions. This leads

to a variety of partial interference types that have not been
studied extensively by existing solutions. This work first
characterizes the features of partial interference and presents
Gsight, which takes an incremental learning model to pre-
dict workload performance under partial interference. The
experimental results show that Gsight employing the IRFR
machine learning model yields very high accuracy. By apply-
ing Gsight in the context of a scheduling use case, we also
demonstrate that the proposed approach can significantly
improve resource efficiency.

9 Acknowledgments
Our sincere thanks and appreciation goes to the SC review-
ers, for their extremely insightful and helpful comments
and suggestions that have significantly improved the qual-
ity of this paper. We thank Dr. Tao Li for his significant
contribution to this work. This work is supported by the
National Key Research and Development Program of China
No. 2016YFB1000205; the National Natural Science Founda-
tion of China under grant 61872265; the new Generation of
Artificial Intelligence Science and Technology Major Project
of Tianjin under grant 19ZXZNGX00010; State Key Lab. of
Computer Architecture (ICT, CAS)-CARCHA202009; NUDT-
PDL-6142110200405; State Key Lab. of Communication Con-
tent Cognition fund No.A32001.

References
[1] 2020. AWS Lambda. https://aws.amazon.com/lambda/.
[2] Y. Amannejad, D. Krishnamurthy, and B. Far. 2016. Predicting Web

service response time percentiles. In 2016 12th International Conference
on Network and Service Management (CNSM). 73–81.

[3] ApacheSolr. 2020. Solr is the popular, blazing-fast, open
source enterprise search platform built on Apache Lucene.
https://lucene.apache.org/solr/.

[4] Quan Chen, Zhenning Wang, Jingwen Leng, Chao Li, Wenli Zheng,
and Minyi Guo. 2019. Avalon: Towards QoS Awareness and Improved
Utilization Through Multi-resource Management in Datacenters. In
Proceedings of the ACM International Conference on Supercomputing
(Phoenix, Arizona) (ICS ’19). ACM, New York, NY, USA, 272–283.

[5] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason
Mars, and Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-
Preemptive Accelerators to Improve Utilization in Warehouse-Scale
Computers. SIGOPS Oper. Syst. Rev. 51, 2 (April 2017), 17–32.

[6] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PAR-
TIES: QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA,
107–120.

[7] Raphael Couronne, Philipp Probst, and Anne-Laure Boulesteix. 2018.
Random forest versus logistic regression: a large-scale benchmark
experiment. BMC Bioinformatics 19 (2018), 270:1–270:14. Issue 270.

[8] T. Cover and P. Hart. 2006. Nearest Neighbor Pattern Classification.
IEEE Trans. Inf. Theor. 13, 1 (Sept. 2006), 21–27.

[9] Matt Crane and Jimmy Lin. 2017. An Exploration of Serverless Archi-
tectures for Information Retrieval. In Proceedings of the ACM SIGIR In-
ternational Conference on Theory of Information Retrieval (Amsterdam,
The Netherlands) (ICTIR ’17). Association for Computing Machinery,
New York, NY, USA, 241–244.



SC ’21, November 14–19, 2021, St. Louis, MO, USA Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li

[10] Yan Cui. 2019. How to build a social network on serverless.
https://www.apidays.co/barcelona2019/.

[11] Christina Delimitrou and Christos Kozyrakis. 2013. QoS-Aware Sched-
uling in Heterogeneous Datacenters with Paragon. ACM Trans. Com-
put. Syst. 31, 4, Article 12 (Dec. 2013), 34 pages.

[12] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
efficient and QoS-aware Cluster Management. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (Salt Lake City, Utah, USA) (ASPLOS
’14). ACM, New York, NY, USA, 127–144.

[13] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS’20). Association for Computing Ma-
chinery, New York, NY, USA, 467–481.

[14] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru
Iosup. 2020. A Review of Serverless Use Cases and their Characteristics.
arXiv:2008.11110 (2020).

[15] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin,
and Rodrigo Fonseca. 2012. Jockey: Guaranteed Job Latency in Data
Parallel Clusters. In Proceedings of the 7th ACM European Conference
on Computer Systems (Bern, Switzerland) (EuroSys’12). Association for
Computing Machinery, New York, NY, USA, 99–112.

[16] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 3–18.

[17] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big Data
to Navigate the Complexity of Performance Debugging in Cloud Mi-
croservices. In Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS. ACM, 19–33.

[18] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam.
2011. Cuanta: Quantifying Effects of Shared On-chip Resource Inter-
ference for Consolidated Virtual Machines. In Proceedings of the 2Nd
ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC ’11).
ACM, New York, NY, USA, Article 22, 14 pages.

[19] K. Hornik, M. Stinchcombe, and H. White. 1989. Multilayer Feedfor-
ward Networks Are Universal Approximators. Neural Netw. 2, 5 (July
1989), 359–366.

[20] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj
Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex
Chen, Jack Zhang, and Junhua Wang. 2018. PerfIso: Performance
Isolation for Commercial Latency-Sensitive Services. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 519–532.

[21] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scal-
able Serverless Computing for Latency-Sensitive, Interactive Microser-
vices. In Proceedings of the 26th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’21). ACM, New York, NY, USA, 127–144.

[22] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. Occupy the Cloud: Distributed Computing for
the 99%. In Proceedings of the 2017 Symposium on Cloud Computing.

Association for Computing Machinery, New York, NY, USA, 445–451.
[23] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.

Centralized Core-Granular Scheduling for Serverless Functions. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). Association for Computing Machinery, New
York, NY, USA, 158–164.

[24] Ram Srivatsa Kannan, Michael Laurenzano, Jeongseob Ahn, Jason
Mars, and Lingjia Tang. 2019. Caliper: Interference Estimator for
Multi-tenant Environments Sharing Architectural Resources. ACM
Trans. Archit. Code Optim. 16, 3, Article 22 (June 2019), 25 pages.

[25] J. Kim and K. Lee. 2019. FunctionBench: A Suite of Workloads for
Serverless Cloud Function Service. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). 502–504.

[26] Y. Kim and J. Lin. 2018. Serverless Data Analytics with Flint. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD).

[27] Kubernetes. 2020. Kubernetes: Production-Grade Container Orches-
tration. https://kubernetes.io.

[28] Kubernetes. 2021. https://kubernetes.io/docs/reference/scheduling/policies/.

[29] Sun-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y. Ng. 2006. Ef-
ficientL1Regularized Logistic Regression. In Proceedings of the 21st
National Conference on Artificial Intelligence - Volume 1 (Boston, Mas-
sachusetts) (AAAI’06). AAAI Press, 401–408.

[30] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura.
2015. SparkBench: A Comprehensive Benchmarking Suite for in Mem-
ory Data Analytic Platform Spark. In Proceedings of the 12th ACM
International Conference on Computing Frontiers (Ischia, Italy) (CF ’15).
ACM, New York, NY, USA, Article 53, 8 pages.

[31] Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang, Wentong Cai,
Shanjiang Tang, Xiaoguang Liu, Gang Wang, Xiaoli Gong, and Ying
Zhang. 2019. GAugur: Quantifying Performance Interference of Colo-
cated Games for Improving Resource Utilization in Cloud Gaming. In
Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19).
ACM, New York, NY, USA, 231–242.

[32] Andy Liaw and Matthew Wiener. 2002. Classification and Regression
by randomForest. R News 2, 3 (2002), 18–22.

[33] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2016. Improving Resource Effi-
ciency at Scale with Heracles. ACM Trans. Comput. Syst. 34, 2, Article
6 (May 2016), 33 pages.

[34] A. K. Maji, S. Mitra, and S. Bagchi. 2015. ICE: An Integrated Configu-
ration Engine for Interference Mitigation in Cloud Services. In 2015
IEEE International Conference on Autonomic Computing. 91–100.

[35] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. 2011. Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations. In Proceedings of the 44th
Annual IEEE/ACM International Symposium onMicroarchitecture (Porto
Alegre, Brazil) (MICRO-44). ACM, New York, NY, USA, 248–259.

[36] D. A. Menasce. 2002. TPC-W: A Benchmark for E-Commerce. IEEE
Internet Computing 6 (05 2002), 83–87.

[37] N. Mishra, J. D. Lafferty, and H. Hoffmann. 2017. ESP: A Machine
Learning Approach to Predicting Application Interference. In 2017 IEEE
International Conference on Autonomic Computing (ICAC). 125–134.

[38] MongoDB. 2020. MongoDB: The database for modern applications.
https://www.mongodb.com/.

[39] Nicolas Moutschen, Tom McCarthy, Jérôme Van Der Linden,
and Dan Smith. 2020. AWS Serverless Ecommerce Plat-
form. https://github.com/aws-samples/aws-serverless-ecommerce-
platform.

[40] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada:
Interactive Data Analytics on Cold Data Using Serverless Cloud In-
frastructure. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20).



Understanding, Predicting and Scheduling Serverless Workloads under Partial Interference SC ’21, November 14–19, 2021, St. Louis, MO, USA

Association for Computing Machinery, New York, NY, USA, 115–130.
[41] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds:

Managing Performance Interference Effects for QoS-aware Clouds. In
Proceedings of the 5th European Conference on Computer Systems (Paris,
France) (EuroSys ’10). ACM, New York, NY, USA, 237–250.

[42] OpenFaaS. 2020. https://www.openfaas.com/.
[43] OpenWhisk. 2020. https://openwhisk.apache.org/.
[44] Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Coor-

dinated Partitioning of Last-Level Cache and Memory Bandwidth for
Fairness-Aware Workload Consolidation on Commodity Servers. In
Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Ger-
many, March 25-28, 2019. 10:1–10:16.

[45] Tirthak Patel and Devesh Tiwari. 2020. CLITE : Efficient and QoS-
Aware Co-location of Multiple Latency-Critical Jobs for Warehouse
Scale Computers. In 2020 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). IEEE, 193–206.

[46] Redis. 2020. Redis: an open source, in-memory data structure store.
https://redis.io.

[47] Alice M. Richardson. 2015. Nonparametric Statistics: A Step-by-Step
Approach. International Statistical Review 83, 1 (2015), 163–164.

[48] Jim Scott. 2020. Applying the Lambda Architecture with
Spark. https://databricks.com/session/applying-the-lambda-
architecture-with-spark.

[49] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 205–218.

[50] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. 2020. Serverless Linear Algebra. In Proceedings of
the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA,
281–295.

[51] Alex J. Smola and Bernhard Schölkopf. 2004. A Tutorial on Support
Vector Regression. Statistics and Computing 14, 3 (Aug. 2004), 199–222.

[52] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan,
and Onur Mutlu. 2015. The Application SlowdownModel: Quantifying
and Controlling the Impact of Inter-application Interference at Shared
Caches and Main Memory. In Proceedings of the 48th International
Symposium on Microarchitecture (Waikiki, Hawaii) (MICRO-48). ACM,
New York, NY, USA, 62–75.

[53] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction
for Large-Scale Advanced Analytics. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). USENIX
Association, Santa Clara, CA, 363–378.

[54] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S.
Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu. 2014. BigDataBench:
A big data benchmark suite from internet services. In 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA). 488–499.

[55] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg
Bronevetsky, and Saurabh Bagchi. 2018. Pythia: Improving Datacenter
Utilization via Precise Contention Prediction for Multiple Co-located
Workloads. In Proceedings of the 19th International Middleware Con-
ference (Rennes, France) (Middleware ’18). ACM, New York, NY, USA,
146–160.

[56] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz.
2014. Wrangler: Predictable and Faster Jobs Using Fewer Resources.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle,
WA, USA) (SOCC ’14). ACM, New York, NY, USA, Article 26, 14 pages.

[57] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013.
Bubble-flux: Precise Online QoS Management for Increased Utiliza-
tion in Warehouse Scale Computers. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (Tel-Aviv, Israel)
(ISCA ’13). ACM, New York, NY, USA, 607–618.

[58] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
Serverless Platforms with Serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 30–44.

[59] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-Aware
High Dimensional Configurations Auto-Tuning of In-Memory Cluster
Computing. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems (Williamsburg, VA, USA) (ASPLOS’18). Association for Com-
puting Machinery, New York, NY, USA, 564–577.

[60] F. V. Zacarias, V. Petrucci, R. Nishtala, P. Carpenter, and D. Mossé. 2019.
Intelligent Colocation of Workloads for Enhanced Server Efficiency. In
The 31st International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). 120–127.

[61] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 1187–1204.

[62] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. 2013. CPI2: CPU Performance Isolation for Shared
Compute Clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems (Prague, Czech Republic) (EuroSys ’13). ACM,
New York, NY, USA, 379–391.

[63] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and Lingjia Tang.
2014. SMiTe: Precise QoS Prediction on Real-System SMT Processors
to Improve Utilization in Warehouse Scale Computers. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture (Cambridge, United Kingdom) (MICRO-47). IEEE Computer
Society, Washington, DC, USA, 406–418.

[64] Jiacheng Zhao, Huimin Cui, Jingling Xue, and Xiaobing Feng. 2016.
Predicting Cross-Core Performance Interference on Multicore Proces-
sors with Regression Analysis. IEEE Trans. Parallel Distrib. Syst. 27, 5
(May 2016), 1443–1456.

[65] Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Ke-
qiu Li, and Yungang Bao. 2020. Rhythm: Component-Distinguishable
Workload Deployment in Datacenters. In Proceedings of the Fifteenth
European Conference on Computer Systems (Heraklion, Greece) (Eu-
roSys’20). Association for Computing Machinery, New York, NY, USA,
Article 19, 17 pages.



Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We implement the GSight controller module in Openfaas v0.18.13,
and ran it on a Kubernetes v1.18.3 cluster. It periodically queries
the functions’ deployment status and monitors the function scal-
ing activities. When a new function instance is invoked, the
GSight controller calls the scheduling algorithm and perfor-
mance predictor, and find a placement for it (see the Github of
gray/Algorithm). The load generator generates requests towards
benchmarks in ServerlessBench, FunctionBench (see gray/LoadGen
and gray/LoadGenSimClient). The metric collector is used to col-
lect applications’ microarchitecture metrics under different inter-
ference scenaios for training the machine learning model (see
gray/gsightCollector, gray/models and gray/benchmarks). More
details are listed as below.

Benchmark Installation
1. Deployment guide of OpenFaaS for Kubernetes is available

here: https://docs.openfaas.com/deployment/kubernetes/.
2. Run benchmarks /install.sh to build & deploy all functions.
Notice: this operation takes some time.
We can also build & deploy functions according to the description

below: https://docs.openfaas.com/cli/build/
Workload Generator Installation
Guidance is available here: loadGen/README.md
Notice: Be sure that OpenFaaS functions and workload gener-

ator work well before running thefollowing script. The project
LoadGenSimClient cannot work if the LoadGen has not yet been
deployed.

Metrics Collector
Compile gray/gsightCollector/ to generate a runnable jar package.

Then, run java -jar collector.jar func_name interval result_dir_name
to collect metrics of corresponding functions under their solo-run.

Run models/collector/start.sh , and it will create a csv file that
stores the metrics under co-locating. You can edit start.sh to set
the QPS of LS workloads, edit models/collector/get_ml_data.py
to set the amount of data to be collected, and edit mod-
els/collector/runBEPara.py to configure tasks that co-locate with
the LS of social network.

Model Training
The initial training dataset is in models/algorithm/data/. Run

models/algorithm/RFR_model_training.py , and it will create a file
named "RFR" to store the RMmodel, and csv file to store importance
of the metrics.

Run models/algorithm/plots_imports.py to review the im-
purity based importance of the 16 metrics, and run mod-
els/algorithm/plots_imports_all.py to show the importance of 16
metrics under all combinations of workload and server.

Scheduler
It’s quite hard to show the whole system, so we provide an ex-

ample of binary-search scheduling algorithm instead. The example
uses randomly generated states of servers and workloads. And
it invokes the actual RFR model trained above for checking SLA
violation.

Compile and run scheduler/src/util/test/GsightScheduler.java to
review the example process of scheduling.

Plotting Results
(1) Figure 3: Figure/matlab/motivation/sn/sn𝑙𝑐𝑖 .𝑚
(2) Figure 4: Figure/matlab/motivation/timediff/TimeDiffdelay.m
(3) Figure 5(a): Figure/matlab/motivation/sn/sn_il_1_new.m
(4) Figure 5(b): Figure/matlab/motivation/sn/sn_il_6_new.m
(5) Figure 6(a): Figure/python/violin𝑐𝑜𝑑𝑒/𝐼𝑃𝐶/𝑣𝑖𝑜𝑙𝑖𝑛.𝑝𝑦
(6) Figure 6(b): Figure/python/violin𝑐𝑜𝑑𝑒/𝐿𝑎𝑡/𝑣𝑖𝑜𝑙𝑖𝑛.𝑝𝑦
(7) Figure 6(c): Figure/matlab/motivation/GsightLatency.m
(8) Figure 8(a): Figure/matlab/evaluation/IPCLatency/IPCLatency.m
(9) Figure 8(b): Figure/matlab/evaluation/IPCLatency/IPCLatencyEC.m
(10) Figure 9: Figure/matlab/add/evaluation/FeatureImportance.m
(11) Figure 10(a): Figure/matlab/evaluation/xiangti2_before/data90.m
(12) Figure 10(b): Figure/matlab/evaluation/xiangti2/

data90LatencyIRFRCompare.m
(13) Figure 11(a): Figure/matlab/errorProcess/Serverful.m
(14) Figure 11(b): Figure/matlab/errorProcess/Serverless.m
(15) Figure 11(c): Figure/matlab/evaluation/xiangti2/data90multi.m
(16) Figure 12(a): Figure/matlab/evaluation/cdf/DensityCDF.m
(17) Figure 12(b): Figure/matlab/evaluation/cdf/CPUCDF.m
(18) Figure 12(c): Figure/matlab/evaluation/cdf/MemCDF.m
(19) Figure 13(a): Figure/matlab/evaluation/inferenceSLA/SNSLA.m
(20) Figure 13(b): Figure/matlab/evaluation/inferenceSLA/TPCWSLA.m
(21) Figure 14(a): Figure/matlab/Revenue/PlotPie.m
(22) Figure 14(b): Figure/matlab/Revenue/PlotLine.m
(23) Figure 15(a): Figure/matlab/add/evaluation/PlotPie.m
(24) Figure 15(b): Figure/matlab/add/evaluation/TimeDiffdelay.m

Author-Created or Modified Artifacts:

Persistent ID:

https://zenodo.org/badge/latestdoi/355110307↩→

Artifact name: Source Code for Gray Interference

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: 8 nodes of cluster, each server has
256 GB RAM, 40 cores Intel Xeon E7-4820v4 CPU and 960GB SSD
capacity

Operating systems and versions: Ubuntu 16.04 running Linux
kernel 4.13.0

Compilers and versions: JDK1.8.0, Python3.7, Go1.10.3

Applications and versions: OpenFaaS v0.18.13, Kubernetes v1.18.3

Key algorithms: Random Forest


	Abstract
	1 Introduction
	2 Understanding Partial Interference
	2.1 Observations
	2.2 Implications

	3 Predicting with Gsight
	3.1 Design
	3.2 Profiling
	3.3 Incremental Learning
	3.4 Learning Model

	4 Scheduling using Gsight
	5 Implementation
	5.1 OpenFaaS Implementation
	5.2 Function Startup Latency

	6 Evaluation
	6.1 Methodology
	6.2 Prediction Error
	6.3 Scheduling Results
	6.4 Overhead and Scalability

	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References

