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ABSTRACT

Modern websites increasingly rely on machine learning (ML) to

improve their business efficiency. Developing and maintaining ML

services incurs high costs for developers. Although serverless sys-

tems are a promising solution to reduce costs, we find that the

current general purpose serverless systems cannot meet the low

latency, high throughput demands of ML services.

While simply łpatchingž general serverless systems does not re-

solve the problem completely, we propose that such a system should

natively combine the features of inference with a serverless para-

digm. We present INFless, the first ML domain-specific serverless

platform. It provides a unified, heterogeneous resource abstraction

between CPU and accelerators, and achieves high throughput us-

ing built-in batching and non-uniform scaling mechanisms. It also

supports low latency through coordinated management of batch

queuing time, execution time and coldstart rate. We evaluate INF-

less using both a local cluster testbed and a large-scale simulation.

Experimental results show that INFless outperforms state-of-the-

art systems by 2×-5× on system throughput, meeting the latency

goals of ML services.
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1 INTRODUCTION

Due to its resource management-free, auto-scaling and cost effi-

ciency advantages, serverless computing has been a success in

multiple areas, e.g., web services, IoT monitoring applications, en-

tertainment [16]. Machine learning (ML) inference, i.e., deploying

well-trained models in applications to provide prediction or clas-

sification services, is yet another promising area for serverless

adoption. Typical explorations include Amazon Alexa [4], Face-

book Messenger Bot [28] and optical character recognition (OCR)

[20].

Unlike scheduled background applications, ML inferences are

often integrated into online websites (e.g., e-commerce, search en-

gine, social network) and comes with strict latency requirements.

For example, China’s largest local life service website, relies on hun-

dreds of ML inference services in their core business, ranging from

advertisements, and question-answering robots, to fraud detection.

Among these cases, 90% of the inference response times should be

less than 200ms. Although prior works [3, 6, 41] have proved the

great potential of serverless inference, current commercially avail-

able serverless services such as Amazon Lambda[25], Google Cloud

Functions[19], and Azure Functions [5] do not cater to the needs

of ML inference, as they do not address the challenge of providing

solutions for guaranteeing latency, while the resource efficiency at
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Figure 1: Schematic overview of serverless inference systems.

the serverless provider side is also very low; namely, (i) serverless

providers do not allow users to specify latency requirements in

their Service Level Objectives (SLOs) and therefore cannot satisfy

diverse latency requirements, which may range from tens to hun-

dreds of milliseconds across models [32], and (ii) large inference

models are often highly parallelizable and computationally inten-

sive, heavily relying on accelerators (e.g., GPUs, FPGAs or NPUs)

for fast processing. However, they merely support the use of CPU

resources.

To improve system throughput, recent frameworks such as Mark

[41] and BATCH [3] adopt a batching method, which aggregates

multiple inputs together for more efficient execution. However,

their approaches all share an On-Top-of-Platform (OTP) design, i.e.,

building another new buffer layer on top of the commercial server-

less platform. Although they do improve the cost-efficiency and

throughput, the OTP design also introduces additional latency for

request scheduling, and the end-to-end latency guarantee is still not

addressed. Moreover, such designs are oblivious to the underlying

resource allocations and have limited ability to optimize system

throughput. For example, they are unable to adjust the resource

allocation when the computational efficiency of a model varies

over resource configurations and batchsizes; nor can they switch

automatically between CPU and accelerators.

In this paper, we argue for a native serverless inference sys-

tem, i.e., a serverless system tailored for inference serving by fully

integrating the inference features inside the platform design (ac-

celerator support, built-in batching, etc.). As shown in Figure 1,

when compared with the OTP approach, the native design brings

opportunities for exploring the full stack optimization from func-

tion scheduling to resource management, which enables it to take

all operational responsibilities and provides high performance and

resource efficiency for users and developers, respectively.

A native serverless inference system introduces several chal-

lenges that need to be addressed. (i) Low latency: In a serverless

platform, the function scheduling delay, instance startup and batch

processing will impact the end-to-end latency for serving a request.

Managing the time overhead in each stage to guarantee overall

latency is challenging. (ii) High throughput: Introducing accel-

erator support and a built-in batching mechanism complicates the

resource management and function scheduling. How to choose the

optimal hardware and batch configurations for runtime functions

to maximize system throughput is also a challenge. (iii) Low over-

head: The overall system should be practicable and efficient, and

the newly added modules or modifications should also be light-

weight and easy to use.

To overcome the abovementioned challenges, we build INFless,

the first ML domain-specific serverless platform. INFless caters to

inference as Backend-as-a-Service (BaaS) offerings. It accepts the

function code of inference models and automates the deployment

and scaling under varying workloads. INFless allows user to specify

their high-level performance requirements (e.g., latency SLO). It can

guarantee sub-second latency for user requests and achieve high

resource efficiency through a native design, which fully combines

the features of inference service with serverless paradigm.

Our contributions can be summarized as follows:

• We co-design the batch management and heterogeneous

resource allocationmechanism, and propose the non-uniform

scaling policy to maximize resource efficiency.

• Wepropose a lightweight combined operator profilingmethod

that quickly infers an appropriate instance configuration to

meet latency requirements.

• We design a novel Long-Short Term Histogram (LSTH) policy

to reduce the cold start rate by 21.9%, while at the same time

reduces resource waste by 24.3%.

• We completely implement INFless based on OpenFaaS [17],

an open-source FaaS platform, and demonstrate its signifi-

cant improvement in resource efficiency and SLO guarantee

from both a real-world deployment and a large-scale of sim-

ulator evaluation.

2 BACKGROUND & MOTIVATION

In this section, we show the inefficiency of inference on existing

serverless platforms through an example study of AWS Lambda.

2.1 Serverless Inference

The serverless computing paradigm has undergone rapid growth

over the past few years. Many applications are being deployed in

commercial serverless platforms [4, 16, 20, 28, 36, 40]. In particular,

the dominating application domain is web services [16], i.e., build-

ing serverless backends to handle web requests. Machine learning

is also widely integrated into web services. For example, China’s

largest local life service website has deployed more than 600 ML

inference models serving millions of requests every minute. These

models include fraud detection, pornographic image recognition,

false information detection and customer service robots. They are

commonly structured as individual background modules. When

users publish messages regarding topics such as housing rental,

recruitment, secondhand products, catering, and entertainment on

the website, these models are triggered at the backend to process

them.

These inference services are commonly latency critical but have

complex computations. For example, more than 90% of the mod-

els at the local life service website are required to respond within

200ms (Figure 2(d)). As cluster management and model configura-

tions generate non-negligible cost for developers (especially under

varied or bursty workloads [3]), serving inference on serverless sys-

tems becomes a promising solution. First, inference services could

easily decouple from front-end applications and deploy as stateless

functions. Second, developers could quickly build inference services

using function templates without participating in instance manage-

ment. Third, the auto-scaling ability of serverless computing could

deal with bursty workloads well. Fourth, the pay-per-use billing

model also saves money for service providers.
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Models (%)
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50-200ms 11.6

200-500ms 1.1

500-1000ms 0.6

>1000ms 0.3

(d) Latency SLO distribution

Figure 2: (a) The inference latency distribution when running models on AWS Lambda without batching support. (b) The

inference latency distribution when running models on AWS Lambda with OTP-batching support, where ×means that the

memory size is too small to load the model. (c) The memory over-provisioning for achieving low latency requirement. (4)

Real-world latency SLO distribution by the local life service website.

2.2 Limitations of Existing Serverless Platforms

Despite the great potential of serverless inference, after we study

the performance of 11 typical inference models (Table 1) on AWS

Lambda, we find that the current commercial serverless platform

does not fit well with inference.

Observation #1: High latency: The commercial serverless platform

lacks the support of accelerators and therefore cannot provide low-

latency services for large-sized inference models.

Commercial serverless platforms often require developers to

specify the memory size explicitly for their function instances (e.g.,

ranging from 128 MB to 3072 MB) and allocate CPU quotas in

proportion to the memory size. We characterize the invocation

time of inference models under different function memory sizes

on AWS Lambda. To avoid the cold start latency, we continuously

send inference requests to keep the function instance alive and

measure the execution time for each invocation. As shown in Fig-

ure 2(a), the dark color represents high execution time, while the

light color indicates better function performance, and × means the

model cannot be loaded with too small a function memory size. We

can see that small models (e.g., MNIST, Textcnn-69) can respond

within 50ms under each memory configuration as long as it can be

loaded, but for the other large models, such as Bert-v1, ResNet-50

and VGGNet, a small memory configuration leads to quite a long

execution time (exceeding hundreds of milliseconds) due to the

limited CPU quotas allocated to them. Even configured with the

maximum allowable memory size, their execution time for a single

request exceeds 200ms, making it difficult to meet the latency SLO

in the production environment.

Observation #2: For batch-enabled inference, commercial serverless

platforms cannot provide low-latency services for some small-sized

models.

Batching is an optimization method specifically designed for

ML inference. It can increase resource efficiency of inference ser-

vices by processing multiple requests simultaneously [3, 13, 37].

To evaluate the inference performance under batching, we imple-

ment the OTP batching mechanism[3] on AWS Lambda. We set the

batchsize to 4 or 8 and measure the invocation time by varying the

allocated memory size. Figure 2(b) shows that nearly all inference

models experience poor performance under batching. In particular,

for models including DSSM-2365, SSD, Textcnn-69 and MobileNet,

batching increases their execution time by more than 4×, so that

Table 1: ML inference models collected from the MLPerf

benchmark and real-world commercial services.

ML Model Network Size GFLOPs Description & Source

Bert-v1 391M 22.2 Language processing[12]
ResNet-50 98M 3.89 Image classification[23]
VGGNet 69M 5.55 Feature localisation[33]

LSTM-2365 39M 0.10 Text Q&A system[9]
ResNet-20 36M 1.55 Image classification[23]

SSD 29M 2.02 Object detection[8]
DSSM-2365 25M 0.13 Text Q&A system[2]
YamNet 17M 1.60 Speech recognition[27]

MobileNet 17M 0.05 Mobile network[42]
TextCNN-69 11M 0.53 Text classification[7]

MNIST 72k 0.01 Number recognition[18]

the latency exceeds 200ms, making it difficult for them to provide

low-latency inference services for users.

Observation #3: Resource over-provisioning: The proportional CPU-

memory allocation policy set by a commercial serverless platform

does not fit with computationally-intensive inference. It encourages

over-provisioning of memory, resulting in poor resource utilization.

Commercial serverless providers such as AWSLambda andGoogle

Cloud Functions allocate CPU power in proportion to the amount

of memory configured. Developers can increase or decrease the

memory and CPU power allocated to the function using thememory

setting. Although AWS Lambda can provide a latency of < 200ms

for some of the models (e.g., SSD and MobileNet under no-batching

in Figure 2(a) or ResNet-20 and DSSM-2365 under batching in Fig-

ure 2(b)), we find that its proportional CPU-memory allocation policy

tends to apply for a larger memory to obtain a sufficient CPU quota.

As shown in Figure 2(c), more than 50% of the function memory is

over-provisioned for serving these models to meet the latency SLO.

For example, serving SSD without batching within 200ms requires

at least 1,792 MB of function memory allocation, while the actual

consumption is only 427 MB. This leads to much cloud resource

waste and increases user cost under the current serverless pricing

models[40].

Observation #4: The łone-to-one mapping" request processing policy

of commercial serverless platforms causes low resource utilization.

Existing commercial platforms generally only support a łone-to-

one mapping" policy for processing requests; i.e., each inference

request is dispatched to a separate instance. This policy inherently

causes an excessive number of instances to be created, especially

under bursty workloads. While it may not be problematic for other

workloads, the excessive instances are supposed to be reduced

through batching for ML workloads. Figure 3(a) shows the number
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Figure 3: (a) Excessive instances created by the łone-to-onež

mapping policy. (b) Comparison of performance and through-

put between the OTP batching method and INFless.

of instances activated for serving ResNet-20 with and without OTP

batching. By aggregating the user requests into batches (we set

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 4), the total number of function invocations declines

by 72%. As an instance may be reused by a later-arriving request,

the total number of launched instances under batching also declines

by 35%. Moreover, the memory usage decreases from 117,555 GB·s

to 96,303 GB·s.

Observation #5: OTP batching lacks the codesign of batch config-

uration, instance scheduling and resource allocation, bringing only

limited throughput improvement.

The prior OTP batching strategy [3] supports aggregating re-

quests into batches before submitting them to AWS Lambda. This

design improves the throughput and reduces the monetary cost.

However, there are some drawbacks to it: (1) OTP batching has to

be deployed and maintained at another dedicated server, generat-

ing great cost for developers. (2) It is unaware of the scheduling

delay and queuing time inside the serverless platform, which makes

it hard to meet the low latency requirements of many inference

functions. (3) It can only select instance configurations outside of

AWS Lambda, and the uniform scaling policy in these platforms

make it unable to adaptively tune parameters when the workload

varies, leading to suboptimal scheduling and resource provisioning

decisions. Figure 3(b) shows that although OTP batching improves

throughput by 30% compared with the original AWS Lambda, our

native serverless inference system INFless, which determines the

batch configuration, instance scheduling and resource allocation

collaboratively, could further improve throughput by nearly 3×

compared with the OTP batching method.

2.3 Implications

The limitations of existing serverless platforms make it particularly

desirable to have a novel, native serverless inference system that is

able to provide both low latency guarantees and high throughput.

To achieve this goal, the serverless inference system should be able

to address the observations above: (1) Supporting hybrid CPU/accel-

erators: Due to the computationally intensive nature of inference

models (Observations 1 and 2), it is necessary to introduce the

support of accelerators in serverless platforms to provide low la-

tency for inference models (especially for large-sized models). (2)

Producing resource-efficient scheduling: Instead of the proportional

CPU-memory allocation policy (Observation 3), the serverless

inference system should support flexible resource allocation for im-

proving the throughput. Optimal scheduling can be approximated

closely by knowing the resource demand profile of the inference

models. (3) Supporting built-in batching: While batching is able to

improve system throughput (Observation 4), OTP batching with

the uniform scaling policy in existing serverless platforms is still

inefficient (Observation 5); the serverless inference system should

support built-in batching and explore more flexible instance scaling

design for higher throughput.

However, it is challenging to design such a system. The control

ability of the backend system has to be enhanced significantly, and

it commonly requires full-stack optimizations across both software

and hardware layers. We begin our exploration from addressing the

following challenges: (1) The hardware affinity and interchangeabil-

ity [26] complicate the management of hybrid CPU/accelerators;

(2) The batchsize and resource selection further enlarge the search

space of scheduling decisions; (3) The running overhead should

also be low to make the system more practicable.

3 METHODOLOGY & SYSTEM DESIGN

In this section, we present the design of INFLess.

3.1 System Architecture

Gateway

Scheduler

Prediction Model
Operator
Profiles

Dispatcher
... ... ...

Node 1
Node 2

 Batching

Workload

CPU GPU

Coldstart 
Manager

Auto-scaling
Engine

update

Developer

User

1 2 3

4 6

5

7

Invocations

INFless

Latency SLO

Cluster

Cluster 
Status

Figure 4: The design overview of INFless.

The basic idea is that a serverless inference platform should exploit

the features and characteristics of inference (e.g., shared operators,

batching and computation intensive) to optimize system performance.

Figure 4 highlights the design overview of INFless. A core com-

ponent of INFless is the non-uniform scaling engine. Instances of

the same function may have different configurations, which en-

ables flexible allocation of resources and workloads at instance

level. The autoscaling engine takes the inference model profiles

and cluster resource status as input, explores to determine instance

configurations (batchsize, CPU-GPU quotas, request arrival rate

and placement) to maximize the resource efficiency under an SLO

guarantee.

INFless is positioned as a domain-specific serverless platform

for easy and cost-efficient inference service development. For de-

velopers, INFless provides function templates to help them easily

build inference functions (Figure 5). When a function is deployed➊,

INFless builds a performance prediction model by combining the

profiles of its operators. This method is lightweight since it only

requires parsing the DAG structure of the model➋, and the overall

latency of a model can be easily estimated through a combination

of its operators’ execution times. As inference models often share
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the same set of operators [1], we only need to profile the operators

beforehand➌.

For a user’s inference queries➍, INFless automatically generates

instance configurations that meet workload and latency require-

ments. The arrived requests pack into built-in batches and dispatch

to the corresponding instances➎. If the workload or cluster resource

status changes, the auto-scaling engine adaptively tunes the new

instance configurations with a non-uniform scaling policy by se-

lecting from the optimized batch-resource decisions to best match

the system goals➏. As instance cold start generates non-negligible

latency, INFless further designs an LSTH policy to avoid the start

latency ➐. Overall, the latency of a request consists of three parts,

𝑙 = 𝑡𝑐𝑜𝑙𝑑 + 𝑡𝑏𝑎𝑡𝑐ℎ + 𝑡𝑒𝑥𝑒𝑐 , where 𝑡𝑐𝑜𝑙𝑑 is the cold start time and

𝑡𝑐𝑜𝑙𝑑 = 0 if cold start is avoided, 𝑡𝑏𝑎𝑡𝑐ℎ is the time of waiting in the

batch, and 𝑡𝑒𝑥𝑒𝑐 represents the batch execution time.

1 provider:

2 name: INFless

3 gateway: http://127.0.0.1:31112

4 functions:

5 resnet-50:

6 lang: python3

7 handler: ./resnet-50

8 image: resnet50-faas:latest

9 latency_target: 100ms #SLO

10 requests:

11 memory: 4096Mi #optional

12 cpu: 2 #optional

13 ...

1 ...

2 ...

3 labels:

4 com.infless.max.batch: 8

5 environment:

6 MODEL_NAME: resnet-50

7 MODEL_BASE_PATH: /models

8 BATCH_BASE_PATH: /batches

9 configuration:

10 copy:

11 - ./script

12 - ./models

13 - ./batches

Figure 5: Template fields of INFless

3.2 Built-in, Non-Uniform Batching

Unlike the uniform batching in OTP method [3], INFless adopts a

batching mechanism that is both built-in and non-uniform:

Built-in: Batching is integrated into the serverless platform, en-

abling simultaneous, collaborative control over batchsize, resource

allocation and placements.

Non-uniform: Each instance has an individual batch queue to

aggregate inference requests. The batchsize and resource quotas of

each instance, regardless of whether it is from the same function,

can differ and enable full utilization of resource fragments in the

cluster.

A user request first waits in a batch queue until the batch is

entirely filled or times out. Clearly, a high request arrival rate could

fill the batch queue quickly, and requests have to be dropped if the

previous batch is already full but not yet submitted (Figure 6(a)).

To guarantee the latency SLO (i.e., 𝑙 ≤ 𝑡𝑠𝑙𝑜 ) without dropping any

requests, the request arrival rate toward each instance is strictly

kept within a range of [𝑟𝑙𝑜𝑤 , 𝑟𝑢𝑝 ], where 𝑟𝑙𝑜𝑤 (or 𝑟𝑢𝑝 ) denotes the

lower (or upper) bound of the workload that can be processed in

one instance. Supposing the cold start can be avoided, and denoting

by 𝑏 the batchsize of the instance, we have

𝑟𝑢𝑝 = ⌊
1

𝑡𝑒𝑥𝑒𝑐
⌋ × 𝑏, 𝑟𝑙𝑜𝑤 = ⌈

1

𝑡𝑠𝑙𝑜 − 𝑡𝑒𝑥𝑒𝑐
⌉ × 𝑏 (1)

Note that we have 𝑡𝑒𝑥𝑒𝑐 ≤ 𝑡𝑠𝑙𝑜/2 for ensuring 𝑟𝑙𝑜𝑤 ≤ 𝑟𝑢𝑝 , i.e.,

the batch submission speed should not exceed the batch execution

speed. For example, given a latency SLO of 200ms, if the execution

time is 50ms for a function instance whose batchsize is 4, then

the workload dispatched to this instance should be in the range of

[28, 80] requests per second (RPS).

Suppose there already exist 𝑛 instances for an inference function

in the system. Let𝑅𝑚𝑎𝑥 =
∑
𝑖∈[1,..,𝑛] 𝑟

𝑖
𝑢𝑝 and𝑅𝑚𝑖𝑛 =

∑
𝑖∈[1,..,𝑛] 𝑟

𝑖
𝑙𝑜𝑤

.
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Figure 6: (a) The over-submission of requests lead to request

drop. (b) An example of the instance scaling procedure, and L

(S) represents function instance configured with large (small)

batchsize, respectively.
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Figure 7: Calling frequency and execution time of the DNN

operators. (a) LSTM-maxclass contains 27 operators, andMat-

Mul takes more than 95% of the overall execution time; (b)

ResNet-50 contains 8 operators, and most of the execution

time is spent on Conv2D.

Denoting by 𝑅 the actual overall RPS towards the function, then

the RPS for each instance is controlled as follows:

(i) 𝑅 > 𝑅𝑚𝑎𝑥 : In this case, each instance will be dispatched with an

RPS as high as 𝑟 𝑖𝑢𝑝 . Then, the auto-scaling engine will be notified to

launch new instances for processing the residual RPS (i.e.,𝑅−𝑅𝑚𝑎𝑥 ).

(ii) 𝛼𝑅𝑚𝑖𝑛 + (1 − 𝛼)𝑅𝑚𝑎𝑥 ≤ 𝑅 ≤ 𝑅𝑚𝑎𝑥 : To avoid frequent scaling

oscillation under workload fluctuations, we allow each instance to

have a varied RPS which is controlled using a constant 𝛼 ∈ [0, 1].

That is, the RPS dispatched to an instance 𝑖 is in proportion to its

range size: 𝑟𝑖 = 𝑟 𝑖𝑢𝑝 −
𝑅𝑚𝑎𝑥−𝑅

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
× (𝑟 𝑖𝑢𝑝 − 𝑟

𝑖
𝑙𝑜𝑤
). In practice, we

prefer a request arrival rate of an instance to be as close to its upper

bound as possible to improve throughput (Figure 6(b)), and 𝛼 is set

to 0.8 in our implementation.

(iii) 𝑅 < 𝛼𝑅𝑚𝑖𝑛 + (1 − 𝛼)𝑅𝑚𝑎𝑥 : In this case, the auto-scaling engine

will release extra instances to return to the above case, and the

workload dispatched to each active instance is also re-calculated.

3.3 Combined Operator Profiling

INFless improves system throughput by deploying as many in-

stances as possible with limited resources. However, insufficient

resource allocation to an instance would lead to high latency, result-

ing in SLO violation. To guarantee the SLO, we design a prediction

model to estimate the latency under various batchsizes and re-

source configurations. As offline profiling every inference function

is rather costly, especially in our application scenario where hun-

dreds of inference models are deployed or updated every day, our

prediction model instead adopts a lightweight combined operator

profiling (COP) method.

Observation #6: Inference functions share a common set of operators,

and the execution time is dominated by a small subset of them.

Inference functions can be structured as a number of connected

operators [1]. We summarize the 11 models in Table 1 and find

that although there are more than 1,000 calls of operators in these
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Figure 8: The prediction results of operator combination

model across different batch-resource configurations.

models, the number of distinct operators is only 71. Figure 7 shows

the number of occurrences of the 35 operators in Lstm-2365 and

ResNet-50. In Lstm-2365, the MatMul operator (i.e., matrix multi-

plication) is called 81 times, while the Sum operator (i.e., vector

summation) appears only once. In addition, we observe that the

overall execution time is dominated by only a small subset of oper-

ators. As shown in Figure 7(a), FusedMatMul and Matmul take up

76% of the overall execution time, and operators such as ConcatV2

and Mul only take up less than 5%. Similarly, more than 95% of the

ResNet-50 execution time is spent on Conv2d (Figure 7(b)). Hence,

a model profile can easily be estimated by the dominated operators.

Given an operator 𝑜𝑖 , we define its profile as a 5-tuple 𝑜𝑖 =

⟨𝑝𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑔𝑖 , 𝑡𝑖 ⟩, where 𝑝𝑖 represents the size of each piece of in-

put data (e.g., the size of an image); 𝑏𝑖 represents the batchsize;

𝑐𝑖 represents the CPU-related resources, including cores, memory

bandwidth, LLC, memory, etc; 𝑔𝑖 represents the GPU-related re-

sources, including GPU memory, SMs, PCI-e bandwidth, etc; and 𝑡𝑖
is the corresponding execution time under the above configuration.

Thus far, we have collected more than 100 operators’ profiles and

stored them in an operator profile database. Due to the massive

number of combinations of 𝑝𝑖 , 𝑏𝑖 , 𝑐𝑖 and 𝑔𝑖 , we merely consider

some discrete values in their separate feasible ranges. For example,

the batchsize is selected from 𝑏𝑖 ∈ {2
0, 21, ..., 2𝑚𝑎𝑥 }, where 2𝑚𝑎𝑥

denotes the maximum allowable batchsize for the model.

Operator profiles can be combined to estimate the overall infer-

ence latency under various batchsizes and resource configurations.

Let𝐺 = (𝑂, 𝐸) be the task graph constructed by the set of operators

𝑂 and their dependency relations 𝐸. The graph can be deconstructed

into two basic structures, including a sequence chain and parallel

branches. For a sequence chain, the execution time of the chain

(𝑡𝑐ℎ𝑎𝑖𝑛) equals to the sum of all its operators. That is,

𝑡𝑐ℎ𝑎𝑖𝑛 =
∑
𝑖∈{𝑐ℎ𝑎𝑖𝑛}

𝑡𝑖

For parallel branches, the overall execution time of the branches

(𝑡𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ) equals to the maximum time among all branches. That

is,

𝑡𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = max
𝑖∈{𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 }

𝑡𝑖

In the case of a task graph with a combined structure of sequence

chains and parallel branches, the overall execution time can be

estimated through a combination of 𝑡𝑐ℎ𝑎𝑖𝑛 and 𝑡𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 .

Figure 8 shows the prediction error |𝑃−𝑃 |/𝑃 of inference latency

across different batch and resource configurations, where 𝑃 and

𝑃 denote the predicted batch execution time and the actual value,

respectively. The operator combination model achieves less than

10% of the average prediction error for different inference functions.

For example, the prediction errors of ResNet-50, MobileNet and

LSTM-2365 are 8.6%, 7.8% and 9.74%, respectively. LSTM-2365 has

the highest average prediction error of 9.74% since it has more exe-

cution paths overlapping in its operator DAG workflow. In practice,

we choose to increase the prediction offset by 10% to reduce the

risk of SLO violations from prediction errors.

3.4 Scheduling

The auto-scaling engine monitors the real-time RPS and judges if

the existing instances are sufficient to fulfill these requests. If not, it

dispatches part of requests to existing instances and calls the sched-

uling algorithm to launch new instances for processing the residual

workload. Given the inference performance prediction model and

the request arrival rate, the scheduling module explores the optimal

configurations of function instances to minimize resource usage

while guaranteeing their latency SLOs.

Denoted by 𝑚 the number of available servers in the cluster.

Suppose there are at most 𝑛 instances (either from the same or

different inference functions) to schedule. For an instance 𝑖 , 𝑖 ∈

[1, .., 𝑛], we need to determine its configurations, including 𝑏𝑖 , 𝑐𝑖 ,

𝑔𝑖 , and its schedule 𝑥𝑖 𝑗 (i.e., a binary variable that has the value "1"

if instance 𝑖 is scheduled on server 𝑗 ; otherwise, it is set to "0"). If

an instance is configured with 𝑏𝑖 = 0, then it has never launched.

We further define a binary variable 𝑦 𝑗 , which has the value "1" if

server 𝑗 is used for instance deployment. Otherwise, it is set to "0".

Hence, the optimization problem can be formulated as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 :

𝑚∑︁

𝑗

(𝛽𝐶 𝑗 +𝐺 𝑗 )𝑦 𝑗 (2)

𝑡𝑖𝑤𝑎𝑖𝑡 + 𝑡
𝑖
𝑒𝑥𝑒𝑐 ≤ 𝑡𝑖𝑠𝑙𝑜 , ∀𝑖 ∈ [1, .., 𝑛] (3)

𝑡𝑖𝑒𝑥𝑒𝑐 ≤ 𝑡𝑖𝑤𝑎𝑖𝑡 , ∀𝑖 ∈ [1, .., 𝑛] (4)

𝑛∑︁

𝑖

𝑐𝑖𝑥𝑖 𝑗 ≤ 𝐶 𝑗𝑦 𝑗 , ∀𝑗 ∈ [1, ..,𝑚] (5)

𝑛∑︁

𝑖

𝑔𝑖𝑥𝑖 𝑗 ≤ 𝐺 𝑗𝑦 𝑗 , ∀𝑗 ∈ [1, ..,𝑚] (6)

𝛼𝑅𝑘
𝑚𝑎𝑥 + (1 − 𝛼)𝑅

𝑘
𝑚𝑖𝑛 ≤ 𝑅𝑘 ≤ 𝑅𝑘

𝑚𝑎𝑥 , ∀𝑘 ∈ 𝐼 (7)

𝑥𝑖 𝑗 ∈ {0, 1}, 𝑦 𝑗 ∈ {0, 1} (8)

𝑏𝑖 , 𝑐𝑖 ∈ 𝑍+, 𝑔𝑖 ∈ 𝑍 (9)

Objective (2) defines the hybrid CPU and GPU resources occupied

by the instances. In particular, 𝐶 𝑗 and 𝐺 𝑗 denote the available CPU

and GPU resources in server 𝑗 . Hence, this objective includes the

fragments on each server that cannot be used. Since CPU and GPU

resources are not directly comparable, we solve this problem using

a conversion factor 𝛽 and evaluate the best 𝛽 by comparing the

floating point operations per second (FLOPS) of the two types of

resources. Constraints (3) and (4) ensure that the latency SLO is

satisfied. In particular, the batch execution time 𝑡𝑖𝑒𝑥𝑒𝑐 = 𝑓 (𝑏𝑖 , 𝑐𝑖 , 𝑔𝑖 )

can be derived through the combined operator profiling prediction

model and the waiting time 𝑡𝑖𝑤𝑎𝑖𝑡 = 𝑏𝑖/𝑟𝑖 , where 𝑟𝑖 is the request

arrival rate toward instance 𝑖 . Constraints (5) and (6) ensure that the

CPU and GPU resources allocated to the instances do not exceed

the available resources on each server. Constraint (7) and Equation

(1) together ensure that the arrived requests 𝑅𝑘 toward function 𝑘

can be fully processed by all of its launched instances. Constraints

(8) and (9) refer to the domain constraints.
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Algorithm 1: Schedule(𝑅𝑘 ,B,M, 𝑡𝑠𝑙𝑜 )

Input:
𝑅𝑘 ⊲ The residual RPS towards the function 𝑘 ;
B ⊲ The batchsize set of 𝑘 , sorted in the descending order;
M ⊲ The available resource capacities for the𝑚-server cluster
𝑡𝑠𝑙𝑜 ⊲ The latency SLO for function 𝑘 ;

Output:
𝑛𝑘 ⊲ The number of instances for function 𝑘 ;
𝑏𝑖 , 𝑐𝑖 , 𝑔𝑖 ⊲ The batchsize/CPU/GPU configs. of instances;
𝑥𝑖 𝑗 ⊲ the placement of each instance;

1 𝑛𝑘 ← 0, 𝑥𝑖 𝑗 ← 0;
2 while 𝑅𝑘 > 0 do
3 for 𝑏 ∈ B do
4 I𝑏 ← AvailableConfig(𝑏, 𝑅𝑘 , 𝑡𝑠𝑙𝑜 )
5 /* 𝑒.𝑔., I𝑏 = { ⟨𝑏, 𝑐1, 𝑔1 ⟩ , · · · , ⟨𝑏, 𝑐𝑛, 𝑔𝑛 ⟩ } */

6 if 𝐼𝑏 = 𝑁𝑈𝐿𝐿 then
7 continue; // try next largest batchsize
8 for ∀ ⟨𝑏, 𝑐𝑖 , 𝑔𝑖 ⟩ ∈ I𝑏 , ∀𝑗 ∈ M do
9 Derive the res. efficiency 𝑒𝑖 𝑗 using Equation 10;

10 if {𝑒𝑖 𝑗 } ≠ 𝑁𝑈𝐿𝐿 then
11 𝑖, 𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑒𝑖 𝑗 }, ∀𝑖 ∈ [1..𝑛], 𝑗 ∈ [1..𝑚];
12 𝑛𝑘 ← 𝑛𝑘 + 1, 𝑥𝑖 𝑗 ← 1; // schedule 𝑖 to 𝑗
13 ⟨𝐶 𝑗 ,𝐺 𝑗 ⟩ ← ⟨𝐶 𝑗 ,𝐺 𝑗 ⟩ − ⟨𝑐𝑖 , 𝑔𝑖 ⟩;
14 𝑅𝑘 ← 𝑅𝑘 − 𝑟𝑢𝑝 ;// update 𝑅𝑘
15 break; // scaling for the rest of 𝑅𝑘

16 Function AvailableConfig(𝑏, 𝑅𝑘 , 𝑡𝑠𝑙𝑜):
17 I𝑏 ← 𝑁𝑈𝐿𝐿;
18 for ∀ ⟨𝑏, 𝑐𝑖 , 𝑔𝑖 ⟩ ∈ all_configurations do
19 𝑡𝑒𝑥𝑒𝑐 ← 𝑓 (𝑏, 𝑐𝑖 , 𝑔𝑖 ) ;// predict the 𝑡𝑒𝑥𝑒𝑐
20 if 𝑏 = 1 then
21 if 𝑡𝑒𝑥𝑒𝑐 ≤ 𝑡𝑠𝑙𝑜 then
22 I𝑏 ← I𝑏 ∪ {⟨𝑏, 𝑡𝑖 , 𝑔𝑖 ⟩ };
23 else
24 Derive the 𝑟𝑢𝑝 and 𝑟𝑙𝑜𝑤 using Equation 1;
25 if 𝑡𝑒𝑥𝑒𝑐 ≤ 𝑡𝑠𝑙𝑜/2 ∧ 𝑅𝑘 ≥ 𝑟𝑙𝑜𝑤 then
26 I𝑏 ← I𝑏 ∪ {⟨𝑏, 𝑐𝑖 , 𝑔𝑖 ⟩ };

27 return I𝑏

This optimization problem is at least as hard as the known NP-

hard bin packing problem [37]. Therefore, we resort to a greedy

scheduling algorithm.

Algorithm 1 shows the details of our scheduling algorithm. As

the batchsize is one of the key components that contributes most

to throughput (ğ 5.2), we always first explore the configurations

with a larger batchsize for each new instance. The algorithm itera-

tively checks whether the maximum batchsize can be employed in

lines 2-15. Given a candidate batchsize 𝑏, the algorithm invokes the

functionAvailableConfig() to explore all possible resource configura-

tions (denoted by I𝑏 ) that meet the latency SLO. We check whether

𝑡𝑒𝑥𝑒𝑐 ≤ 𝑡𝑠𝑙𝑜/2 and 𝑅𝑘 ≥ 𝑟𝑙𝑜𝑤 are established simultaneously (the

former ensures that Equations (3) and (4) are satisfied, and the later

ensures the batches are saturated before the waiting timeout). If

yes, the current configuration of ⟨𝑏, 𝑐𝑖 , 𝑔𝑖 ⟩ is feasible, and we add it

into the set I𝑏 (Lines 24-26). Note that there is no batch queuing

time when the batchsize is 1, and we need only to check whether

𝑡𝑒𝑥𝑒𝑐 meets the latency SLO in lines 20-22. If there are no feasible

resource configurations with the batchsize 𝑏, the algorithm returns

to line 3 and continuously checks the next largest batchsize (Lines

6-7). Otherwise, the algorithm selects the new instance’s resource

configuration from I𝑏 and launches it on a server (Lines 8-15).

In the selection process, aswewould like tomaximize the through-

put while reducing the resource fragmentation as much as possible,

we derive a resource efficiency metric (𝑒𝑖 𝑗 ) for every combination
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Figure 9: (a) The long-term periodicity and short-term

burst behaviors of inference workloads. (b) We propose the

weighted hybrid hist policy by charactering both long-term

and short-term workload patterns.

of instance configuration ⟨𝑏, 𝑐𝑖 , 𝑔𝑖 ⟩ and server 𝑗 as,

𝑒𝑖 𝑗 =
𝑅𝑃𝑆/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
=

𝑟𝑢𝑝/(𝛽𝑐𝑖 + 𝑔𝑖 )

1 − (𝛽𝑐𝑖 + 𝑔𝑖 )/(𝛽𝐶 𝑗 +𝐺 𝑗 )
(10)

where the numerator (𝑅𝑃𝑆/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒) is computed as a normalized

score between [0, 1.0]. We select the combination with the maxi-

mum 𝑒𝑖 𝑗 and schedule the instance on server 𝑗 . We then update the

available resources on server 𝑗 and the residual RPS (Lines 13-14)

and return to line 1 for scaling the next instance (Line 15). Note

that we omit the memory constraint in the scheduling algorithm

design since the memory usage of these inference models are much

smaller than the memory capacity of our servers. However, it can be

easily extended to cover more resource dimensions using resource

vectors.

3.5 Managing Cold Starts with LSTH

Cold starts cause significant performance degradation for serverless

functions [39]. Especially for inference functions, it is even higher

than the actual query execution time due to the large-sized models

and serving library [22]. Thus, it is critical to reduce the number of

cold starts to avoid SLO violations. A state-of-the-art approach is

the hybrid histogram policy (HHP) [36], which tracks the idle times

of a configurable duration (e.g., 4 hours) and draws a histogram

to derive two parameters: (1) pre-warming window: The time the

policy waits, since the last execution, before it loads the function

image expecting the next invocation; (2) keep-alive window: The

time during which a function’s image is kept alive after it has been

loaded to memory [36]. However, after we apply HHP into our

inference web service scenarios, we find that it is so conservative

that it generates too much resource waste.

Figure 9(a) shows a 3-day request load towards a fraud detection

model at the local life service website. We see that the request load

exhibits two distinctive features: (1) Long-term periodicity (LTP):

the request load shows a diurnal user access pattern overall; (2) Short-

term burst (STB): there are many sudden changes (including both

increases and decreases) in short times.While LTP enables the request

predictability, STB reduces the prediction accuracy. In HHP, as the

parameters of pre-warming and keep-alive heavily rely on the data

collected in the tracked duration, setting an appropriate duration

length is rather critical. However, in case of a request load with

both LTP and STB features (Figure 9(a)), this becomes a significant

challenge. A long duration leads to a conservative setting of pre-

warming (i.e., a smaller pre-warming window), resulting in resource

waste when the RPS suddenly decreases. Conversely, a short duration
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cannot capture the periodicity of requests, making the histogram not

representative and increasing the cold start rate.

To address this problem,we propose a Long-Short TermHistogram

(LSTH) policy to derive the pre-warming and keep-alive, which can

reduce the resource waste while avoiding cold starts. As shown in

Figure 9(b), we track both the long-term and short-term application

idle times and draw two histograms. The two histograms represent

the request patterns in the last short (e.g., 1 hour) and long durations

(e.g., 1 day), respectively. Like HHT, we identify the head (e.g., the

5𝑡ℎ percentile) and tail (e.g., the 99𝑡ℎ percentile) of the idle time

distribution and use the head to select the pre-warming window for

the application, and the tail to select the keep-alive window. The

head and tail generated from the short-term histogram are denoted

by 𝑆𝑝𝑟𝑒𝑤𝑎𝑟𝑚 and 𝑆𝑘𝑒𝑒𝑝𝑎𝑙𝑖𝑣𝑒 , and the head and tail generated from

the long-term histogram are denoted by 𝐿𝑝𝑟𝑒𝑤𝑎𝑟𝑚 and 𝐿𝑘𝑒𝑒𝑝𝑎𝑙𝑖𝑣𝑒 .

We derive the pre-warming and keep-alive windows using their

weighted sum. That is, 𝑝𝑟𝑒 −𝑤𝑎𝑟𝑚 = 𝛾𝐿𝑝𝑟𝑒𝑤𝑎𝑟𝑚 + (1−𝛾)𝑆𝑝𝑟𝑒𝑤𝑎𝑟𝑚

and 𝑘𝑒𝑒𝑝 − 𝑎𝑙𝑖𝑣𝑒 = 𝛾𝐿𝑘𝑒𝑒𝑝𝑎𝑙𝑖𝑣𝑒 + (1 − 𝛾)𝑆𝑘𝑒𝑒𝑝𝑎𝑙𝑖𝑣𝑒 , where 𝛾 is a

configurable weight between 0 and 1; by default, we set 𝛾 = 0.5.

In case of a sudden spike that exceeds the peak request arrival

rate in history, LSTH will not be able to prepare sufficient num-

ber of instances and coldstart inevitably occurs. We can use tech-

niques like SOCK [30] and Catalyzer[15] to accelerate the functions’

startup.

4 SYSTEM IMPLEMENTATION

INFless is implemented based on OpenFaaS [17], an event-driven

serverless computing platform atop Kubernetes, with approximately

9,300 lines of Golang. More than 94% of the code was used to modify

the original modules or add new functional components in faas-

netes, and the rest was used for enhancing faas-cli and faas-Gateway.

For the other modules including authority certification, security

check and NATs streaming, we opted to reuse them in INFless. The

prototype system is available here 1. Additionally, we have devel-

oped approximately 5,000 lines of code (Java, Python and Linux

Shells) for the system testing, simulation and load generation.

INFless’s auto-scaling engine is fully integrated into the scal-

ingHandler of faas-netes to replace its original scheduling module.

We make a full stack of functional modifications within OpenFaaS

so that INFless can cooperate with them. For example, we intro-

duce GPU support into the container runtime layer. By using the

container access interface to CUDA devices provided by NVIDIA-

docker [14], INFless can access and manage GPU resources after

mounting its drivers and libraries into the container. To achieve

high resource utilization and performance isolation, we adopt the

CUDA MPS technique[29] for partitioning the GPU streaming mul-

tiprocessors and use linux cgroups for binding CPUs to different

instances. We further use TensorFlow serving [31] for deploying

the user’s ML models and create a batch queue inside the container

when the instance is initialized.

At the application layer, we modify the ParseYAML() in faas-cli

to provide the SLO declaration interface to users. At the system

layer, our work mainly includes (i) developing a register repository

to store data including the function profiles, instance configurations

and cluster available resources; (ii) adding a new predictor module

1https://github.com/TankLabTJU/INFless/

in faas-netes for predicting the execution time using the combined

operator profiling model; (iii) modifying the original trigger rules in

scalingAlert and implementing the batch-aware dispatching mecha-

nism inside the request dispatcher ; and (iv) replacing the scheduling

algorithm and coldstart manager with Algorithm 1 and LSTH.

To help developers build inference services quickly, INFless pro-

vides function templates in Python 2.7/3.4. It currently supports

the direct development for inference models compiled by Tensor-

Flow. We have also developed a format conversion tool to make it

compatible with models created by Keras[10] and Pytorch[34].

5 EVALUATION

5.1 Methodology

Table 2: Experimental testbed configuration.
Component Specification Component Specification

CPU device Intel Xeon Silver-4215 Shared LLC Size 11MB
Number of sockets 2 Memory Capacity 128GB
Processor BaseFreq. 2.50 GHz Operating System Ubuntu 16.04

CPU Threads 32 (16 physical cores) SSD Capacity 960GB
GPU device Nvidia RTX 2080Ti GPU Memory Config 11GB DGDDR6

GPU SM cores 4352 Number of GPUs 16

Experimental setup: Our experiment combines scale-up simula-

tions with experiments on a local testbed cluster.

In local cluster experiments, we use a 8-machine cluster

equipped with 16 Nvidia RTX 2080Ti GPUs. Table 2 summarizes

the configurations of the cluster. The machines are connected via

10 Gbps, full-bisection bandwidth Ethernet.

In simulations, we programmatically scale out the cluster to

2,000 servers to evaluate the effectiveness of controller algorithms

and overhead in INFless. The simulator runs INFless’s real code

and scheduling logic against the simulated machines. There are

three important differences to note. First, the simulated function

invocations are used only for workload arrival rate collection and

are not be forwarded to any instance for execution. Second, the

auto-scaling engine just makes scheduling decisions and records

the cluster and function status without creating or deleting any

instance. Third, we collect only the theoretical throughput upper

bound and scheduling overhead as the evaluation metrics.
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duction trace examples.

Workloads: We create two prac-

tical applications using the mod-

els in Table 1, according to the

online secondhand vehicle trad-

ing (OSVT) business and Q&A

robot service at the local life ser-

vice website. The OSVT employs

machine learning models includ-

ing SSD [8], MobileNet [42] and

ResNet-50 [23] for object detec-

tion, license recognition and vehicle classification. Its latency SLO

is set to 200ms. The Q&A robot uses TextCNN-69 [7], LSTM-2365

[9] and DSSM-2389[2] for understanding user questions and finding

matched answers. Its latency SLO is set to 50ms. Their batchsizes

are set to ≤ 32. These inference services are triggered by both

constant and dynamic invocations. The dynamic invocations are

simulated using the production trace from Azure Function [36],

which include 7-day request statistics with both LTP and STB fea-

tures. Figure 10 shows parts of the three typical types of production

traces in [36]: sporadic, periodic and bursty.
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Table 3: Comparison of serverless inference systems.

Features OpenFaaS+ BATCH INFless

GPU devices support Yes Yes Yes
Batching mechanism No OTP Built-in
Function profiling No Yes Combined Ops
Instance auto-scaling Uniform Uniform Non-Uniform
Batch-aware dispatcher No No Yes
Keep-alive policy Fixed Fixed Dynamic
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Figure 11: Throughput comparisons and component analysis

of INFless. BB: build-in, non-uniform batching; RS: resource

scheduling; OP1.5: add the predicted latency by 50%; OP2: add

the predicted latency by 100%.
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Figure 12: The normalized throughput comparison of INF-

less with baselines: (a) under different production traces; (b)

under different latency SLOs.

Comparison systems: We evaluate INFless with serverless frame-

worksOpenFaaS+ and BATCH. Table 3 shows the comparison among

them.

OpenFaaS+: We enhance the original OpenFaaS to support GPU

for a fair comparison. As it does not support batching, we simply

configure each of its instances with 2 CPU cores and 10% GPU SMs

and set its fixed keep-alive window as 300 seconds.

BATCH [3]: A serverless inference system that adopts the OTP

design. It proposes an adaptive batching method to reduce the

inference cost. Since the original BATCH is implemented atop AWS

Lambda, we redevelop it atop OpenFaaS and extend its memory-

only function profiles with CPU and GPU allocations.

5.2 Local Cluster Evaluation

High throughput: INFless improves system throughput by

2×-5×. Given the limited cluster resources, we run stress testing

on OpenFaaS+, BATCH and INFless using a constant request load.

Figure 11 shows the maximum RPS achieved by them in both OSVT

and Q&A robot scenarios. We can see that INFless can improve

the throughput by 5.2× and 2.6× on average compared with that

of OpenFaaS+ and BATCH, respectively. In Figure 12(a), we fur-

ther evaluate the throughput (i.e., the RPS divided by its occupied

resources) using the three types of production workload. We see

that INFless can improve the throughput by 4.3×, 3.4× and 3.6×

on average compared with OpenFaaS+, and by 2.6×, 1.8× and 2.2×

on average than BATCH, under sporadic, periodic and bursty loads,

respectively. Although the sporadic workload results in many cold
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Figure 13: Throughput distribution contributed by differ-

ent batchsize settings by (a) INFless and (b) BATCH. (c) Re-

source configuration distribution of instances by INFless and

BATCH. (b, c, g) represents the batchsize, CPU core and GPU

SM configuration of instances.

starts, INFless still achieves a throughput 3× higher than that of

BATCH. Relaxing the SLO can also help improve the throughput.

Figure 12(b) shows that INFless achieves 1.6×-3.5× higher through-

put than BATCH under various SLO settings for OSVT. INFless

benefits greatly from its resource scheduling algorithm because of

the much fewer fragments, whereas BATCH ’s throughput does not

increase much due to its resource waste.

Component analysis: Every component of INFless contributes

much to throughput improvement, with batching being the

highest. INFless employs multiple novel techniques for improv-

ing the throughput, including built-in non-uniform batching (BB),

combined operator predicting (OP), and resource scheduling (RS). We

evaluate their separate contributions by measuring the throughput

decrease after ablating each one. In particular, BB is disabled by set-

ting all batchsizes =1; RS is disabled by selecting only the resource

configuration with the maximum throughput; OP is disabled by

simply adding the predicted latency by 50% (OP1.5) and 100% (OP2).

As shown in Figure 11, when we disable the BB, OP and RS

in the OSVT scenario, the throughput drops by 45.6%, 35.4% and

21.9%, respectively. In the Q&A robot scenario, it drops by 60%,

34.3%, 7%, respectively. BB contributes the most to the throughput

improvement. Reducing the prediction accuracy from OP1.5 to OP2

makes INFless conservatively choose smaller-batch instances in

scaling decisions, and this also makes it more easily under-estimate

the instance’s upper bound capacity (𝑟𝑢𝑝 ), resulting in much higher

resource waste. Disabling RS decreases the throughput by only 7%

in the case of Q&A robot, which is different from the 21.9% drop in

the OSVT scenario. This is because the inference models in Q&A

robot service are small-in-size, and their instances generate few

resource fragments even without RS.

Flexible configurations: INFless opts for flexible configura-

tions on both batchsizes and resource allocations. Although

a large batchsize can improve resource efficiency, it is effective

only when the RPS is high, otherwise the batch cannot saturate

before the SLO violation. The non-uniform batching policy enables

INFless to select small batchsizes under the low RPS, so that re-

source fragmentation is reduced. Figures 13(a) and 13(b) show the

throughput distribution contributed by different batchsize settings

for ResNet-50. While BATCH mainly utilizes 2 types of batchsizes

(4 and 8), the batchsize settings of INFless are flexibly chosen from

{1, 2, 4, 8}. Figure 13(c) depicts the resource configuration distribu-

tion of instances for ResNet-50. We see that INFless also opts for

various resource allocation settings, no matter what the batchsize is,

whereas BATCH uses only three configurations. This demonstrates

that INFless can fully exploit the potential of resources.
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Figure 14: Resource provisioning by BATCH (top) and INFless

(bottom).
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Figure 15: (a): SLO violation comparison of INFless with base-

lines and (b): latency breakdown of INFless under different

latency SLO settings.

Less over-provisioning:INFless’s resource allocation policy

reduces the resource provisioning significantly. Taking ResNet-

50 as an example, Figure 14 shows the resource provisioning over a

period by BATCH and INFless, respectively. Since BATCH always

prefers a larger batch (Figure 13(b)), it provisions more resources

than INFless during the increase of the request load. Whenever the

request load declines, INFless can scale-in the number of instances

quickly according to its flexible LSTH policy, whereas BATCH still

holds its resources for some time due to its fixed keep-alive policy.

In this example, INFless can reduce the provisioned resources by

60% compared with BATCH.

SLO violation: INFless can guarantee the latency SLO of in-

ference workloads. Figure 15(a) shows that the SLO violation rate

by INFless is ≤ 3.1% on average, which is far lower than that of

OpenFaaS+ and BATCH. In fact, since OpenFaaS+ adopts the łone-to-

one" request mapping policy for launching instances, its execution

time is much lower than those of BATCH and INFless. However,

as its fixed-keeplive policy for cold start management generates a

much higher cold start rate, the overall SLO violation rate increasesś

e.g., reaching 8% under the sporadic load. BATCH has a similar SLO

violation rate to OpenFaaS+, due to its batch queuing timeout set-

ting. INFless is able to guarantee more than 95% of request latency

SLO even in the sporadic (more cold start invocations) and bursty

(higher scaling pressures) workload patterns. Figures 15(b) and 15(c)

show the latency breakdown by INFless when setting the latency

SLO = 150𝑚𝑠 and = 350𝑚𝑠 , respectively. INFless can regulate the

queueing time roughly equal to the execution time.

Cold start: Compared with HHP, our LSTH policy can reduce

the cold start rate by 20%.We evaluate the cold start rate by LSTH

under the various production traces and the parameter settings (i.e.,

𝛾 ∈ {0.3, 0.5, 0.7}) in Figure 16. We set the LTP duration of LSTH to

24 hours and the STB duration to 1 hour. We see that the cold start

rate by LSTH is 21.9% lower than that of HHP, and its idle resource
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Figure 16: Cold start rate comparison.
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Figure 17: Scheduling overhead and resource fragments of

INFless in large-scale simulations.

waste is reduced by 24.3% on average. Moreover, we can obtain the

lowest resource waste when 𝛾 = 0.5.

5.3 Large Scale Simulation

Scalability: INFless scales well in large-scale evaluations. To

evaluate INFless under different number of functions and instances,

we create no more than 40 functions by varying their respective

SLOs and request loads and launch up to 10,000 instances in the

simulations. Figure 17(a) shows the scheduling overhead gener-

ated by the Schedule() algorithm. Schedule() is highly efficient, so

scheduling a single instance takes only 0.5ms. When the concurrent

requests scales to 10,000, the overall scheduling overhead is still

less than 1 second. Figure 18(a) shows the throughput per unit

of resource generated by the three systems. We see that INFless

still achieves 2.6× and 4.2× higher throughput than BATCH and

OpenFaaS+. By fixing the number of functions at 20 and increasing

the latency from 150ms to 300ms, we find that the throughput per

unit of resource by INFless also increases from 0.7 to 1.0 due to the

less lower resource allocation to each instance (Figure 18(b)).

Resource fragments: INFless’s resource-aware scheduling al-

gorithm reduces the resource fragments significantly. We

measure the amount of unallocated resources in each active server

and derive the resource fragment ratio by dividing it by all the

server’s resources. Figure 17(b) shows the average resource frag-

ment rate generated by the three systems. To evaluate the effec-

tiveness of the scheduling algorithm, we further pass the instances

configured by BATCH to the algorithm, obtaining a fourth system

BATCH+RS. We see that INFless generates a resource fragment ratio

as low as 15%, which is much lower than the others. BATCH+RS

also performs a lower fragment ratio than BATCH, demonstrating

the effectiveness of the scheduling algorithm.

Cost efficiency: INFless can help service developers and cloud

providers reduce the cost of constructing inference services.

To evaluate the economic benefits of INFless, we record the CPU

and GPU consumptions and derive the average computation cost

per inference request. We set the price of a CPU to 0.034$/hour,

following the setting of the r5.2×large service at AWS EC2. Since
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Figure 18: Throughput evaluation in the large-scale simula-

tion.

Table 4: Computation cost comparison.

AWS EC2 OpenFaas+ BATCH INFless

CPUs per 100RPS 49.42 55.63 41.45 13.91
GPUs per 100RPS 2.47 2.13 1.34 0.51
Cost per request [$] 2.23 × 10−5 2 × 10−5 1.32 × 10−5 1.6 × 10−6

AWS EC2 does not provide instances with an NVIDIA GeForce

2080Ti, we refer to the pricing model of Tesla P100 in p3.2×large

and transform it into the price of 2080Ti GPUs equaling 2.5$/hour.

Table 4 shows that INFless reduces the cost per request by > 10×

compared to that by AWS EC2 and OpenFaaS+. Considering the

local life service website that deploys more than 600 inference

models serving 1.9 billion requests per day (more than 20,000 RPS),

they currently rely on a cluster with 400 servers, and the billing

cost approximates $4,253 per day. If we move all these inference

services into INFless, the billing cost will drop to $941 per day,

saving approximately $1,200,000 every year.

6 RELATED WORK

Inference on Serverless: Serving ML models on serverless sys-

tems has been explored in several recent works [3, 6, 21, 38, 41].

MArk [41] explored the cost effectiveness of serverless inference

and proposed a hybrid approach of using both AWS EC2 and a

serverless system for inferences, where the serverless system is

responsible for handling arrival bursts. Swayam [21] is an auto-

scaling framework deployed atop Microsoft Azure, which aims

to minimize the resource waste for ML inference by using a pre-

dictive provision model. BARISTA [6] presents a scalable serving

system using the serverless system to reduce resource provision

based on the workload prediction. Cloudflow [38] focuses on the

prediction serving pipeline on the serverless system and provides

optimizations including function fusion and competitive execution

to improve the performance. BATCH [3] (the state-of-the-art) de-

signs a buffer layer on top of the serverless platform and bundles

requests together with batching for cost-saving serverless infer-

ence. Although they have promoted the development of serverless

inference, they still cannot meet the low-latency, high-throughput

demands of modern websites.

Adaptive batch/resource tuning: Tuning batch or resource con-

figuration adaptively for improving performance has been studied

in [11, 13, 35]. Clipper [11] introduces caching, batching, and adap-

tive model selection techniques to reduce the latency. GSLICE [13]

adopts a heuristic to select the suitable batch and resource configu-

rations. INFaaS [35] could automatically choose the model variant,

batchsize and hardware according to users’ accuracy and perfor-

mance requirements. These works provide insights for performance

optimization but have not considered adaption in serverless com-

puting.

Hybrid CPU/GPU management: Existing serverless platforms

[5, 17, 19, 24, 25] lack unified hardware abstractions and support

only the allocation of CPU/memory resources. Inference platforms

such as Nexus [37], GSLICE [13] and INFaaS [35] support the GPU

provision but neglect the coordination between them. AlloX [26]

features the interchangeability of CPU-GPU resources and places

ML applications on the right resources to maximize efficiency. How-

ever, it does not consider the challenges in serverless computing.

7 CONCLUSION

E-commerce, social networks, search engines, etc., increasingly

rely on ML services. Deploying inference services on serverless

systems can reduce the overall cost for developers due to its auto-

scaling engine and pay-per-use billing model. We examine the

current general purpose serverless platforms and find that they

cannot satisfy the low-latency, high-throughput requirements of

inference services. Hence, we design INFless, which adopts batching

and hybrid CPU-GPU resources and can improve the throughput

significantly while guaranteeing their latency SLO. We evaluate the

effectiveness of INFless using two real application scenarios from

a local life service website. Experimental results demonstrate the

massive cost savings for developers.

In the future, we would like to further study and optimize the

performance of inference function chains in the serverless platform.
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A ARTIFACT APPENDIX

A.1 Abstract

We implement the INFless system in OpenFaas v0.18.13, and run it

on a Kubernetes v1.18.3 cluster. INFless is designed to be deployed by

cloud providers and provides FaaS-based inference services for differ-

ent user from AI scenarios, just like the existing serverless platforms

such as AWS Lambda. The source code of INFless has been released in

GitHub (see the guidance of https://github.com/TankLabTJU/INFless/).

With INFless, the inference models uploaded by the developer could

be easily deployed as inference functions. INFless automatically man-

ages these functions including the resource allocation, scaling and

instance scheduling. Once an inference function is deployed success-

fully, it could be invoked as individual service or embedded into web

applications as backend modules.
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To help to reproduce the experimental results, we have uploaded

the materials for system setup and function deployment. The infer-

ence models are stored in developer directory and the load generator

generates requests towards benchmarks from AI scenarios in 58.com.

The scheduling decisions and instance activities are logged by INFless,

and the experimental results are plotted with Matlab. More details are

listed as below. ‘

A.2 Artifact check-list (meta-information)
• Program: Linux kernel 4.18.0, Docker 19.03-ce, Kubernetes v1.18.3.

• Compilation: go1.13.15.

• Data set: function trace from Micro Azure.

• Run-time environment: Ubuntu 16.04.

• Hardware: Intel x86 servers connected via 10 Gbps, full-bisection

bandwidth Ethernet.

• Experiments: Inference applications from OSVT (Online Secondhand

Vehicle Trading) and Q&A robot scenarios.

• How much disk space required (approximately)?: 50GB per server

to store instance image file.

• How much time is needed to prepare workflow (approximately)?:

2 hours.

• How much time is needed to complete experiments (approxi-

mately)?: 2+ hours.

• Publicly available?: Yes.

• Workflow framework used?: No.

A.3 Description

A.3.1 How to access. The source code, scripts, and instructions are

available on GitHub: https://github.com/TankLabTJU/INFless/.

A.3.2 Hardware dependencies. The INFless implementation works

on Intel x86 CPU servers. The CPU-GPU scheduling experiments

additionally require GPUs to have with support for CUDA MPS

technique support (e.g., Nvidia RTX 2080Ti GPUs).

A.3.3 Software dependencies. The components of INFless is de-

ployed on Kubernetes cluster with NVIDIA-docker which supports

the CUDA device usage inside containers, and Linus cgroups is also

needed to bind CPUs to different instances for isolation.

A.3.4 Data sets. We use the production trace from Azure Function,

which include 7-day request statistics with three different workload

arrival patterns: sporadic, periodic and bursty.

A.3.5 Models. We use two practical applications according to the

online secondhand vehicle trading (OSVT) business and Q&A ro-

bot service at the local life service website. The OSVT employs

machine learning models including SSD, MobileNet and ResNet-50

for object detection, license recognition and vehicle classification.

The Q&A robot uses TextCNN-69, LSTM-2365 and DSSM-2389 for

understanding user questions and finding matched answers.

A.4 Installation

Users need to install INFless on a Kubernetes cluster with Intel

x86 machines, the servers are used for running inference functions.

Additionally, user need to prepare a client machine to generate

workloads for inference serving. Ubuntu 14.04 or 16.04 is recom-

mended for each server.

To build and install INFless framework, user need to download

the source code and scripts from GitHub. The components of IN-

Fless should firstly be compiled and deployed in the kubernetes

master node. The inference model profiling metadata and cluster

configuration files should also be placed in the master node (di-

rectory of ’/root/yaml/’) before launching INFless system. In the

following, we list the directory structure of the GitHub files:

• README.md This file has detailed instructions to run INFless.

• sourceCode The component source code of INFless for compil-

ing and installation.

• configuration The cluster configuration files for launching

INFless.

• developer The inference functions and deployment scripts with

INFless.

• models The metadata of used inference models.

• profiler The model’s profiling metadata.

• workload The function workload trace used for evaluation.

• scripts One brief instruction for the evaluation reproduction.

Source Code Compilation: After downloading the source code

and scripts from GitHub, user need to compile the components of

INFless and deploy them. The source code of gateway and faas-netes

is in the directory of sourceCode/Go. The necessary commands for

compiling INFless are listed as follows:

Switch into the directory of Go

# cd sourceCode/Go/

# cd src/github.com/openfaas/faas/gateway

# make

..................building...................

Successfully built 6f15a4cf589d

Successfully tagged openfaas/gateway:latest-dev

# cd src/github.com/openfaas/faasnetes

# make

..................building...................

Successfully built 6f12c4cf323d

Successfully tagged openfaas/faas-netes:latest-dev

When the components are compiled, using the following com-

mands to deploy INFless into kubernetes cluster.

Switch into the directory of Go

# cd sourceCode/Go/

# cd src/github.com/openfaas/faas-netes

# kubectl apply -f yaml/inuse

Building Inference Function Image: The function image of INF-

less is built based on TensorFlow Serving framework (i.e., the base

image). We provide a pre-configured base image sdcbench/tfseving-

infless:latest in DockerHub for building user’s own inference func-

tions. TensorFlow Serving and NVIDIA-docker is supported in base

images, which enables the inference model to use both CPU and

accelerators. To obtain the base image, please pull the base image

from DockerHub to master node and tag it using the following

command:

# docker pull sdcbench/tfseving-infless:latest

# docker tag sdcbench/tfseving-infless:latest

tensorflow/serving:latest-gpu
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Function Deployment: Once INFless is launched, user can use the

faasdev-cli tool on the server machine to upload and build inference

functions, so they can be set up to run experiments. The faasdev-

cli tool provides several options: faasdev-cli build is to build the

user’s function images using the base image. faasdev-cli deploy is

to deploy the function into INFless, faasdev-cli list and faasdev-cli

delete are used for listing functions and deleting them, respectively.

Commands for compiling the faasdev-cli tool are listed as follows:

# cd INFless/sourceCode/Go/

# cd src/github.com/openfaas/faas-cli

# make

..................building...................

Successfully built 6f15a4cf589d

# cp faasdev-cli /usr/local/bin

Deploy inference functions # cd INFless/developer/serving-

Functions

# faasdev-cli build -f resnet-50.yml

# faasdev-cli deploy -f resnet-50.yml

Notice: More details for deploying inference models could be found

in GitHub (INFless/developer/README.md).

Workload Generator Installation: To conduct experiments, user

need to deploy inference functions inside INFless platform and set

up the loadGen from client node. Using the following commands to

compile and install loadGen:

Switch into the directory of Java

# cd sourceCode/Java/

# cd loadGen

# mvn package -Dmaven.skip.test=true

BUILD SUCCESS

Total time: 22.650 s

Finished at: 2021-07-28T10:43:37+08:00

Notice: More details please see INFless/workload/README.md.

In addition, the loadGen also needs LoadGenSimClient.jar to gen-

erate function invocations. To generate workload for a deployed

inference functions inside INFless, we should deploy the loadGen

tool as a web service, and then use the LoadGenSimClient.jar tool

to connect it with JAVA RMI for controlling the request arrival

rate. The loadGen is compiling as a loadGen.war file and should be

deployed with Apache Tomcat, the recommended Java version is

JDK 1.8.0 or latest ones. Once the loadGen is successfully started, it

will expose server port 22222 for the LoadGenSimClient, then we

could use the following commands to generating workloads for the

deployed functions.

Starting the workload generator

# cd INFless/workload/

# jps -l |grep Load |awk ’print $1’ |xargs kill -9

# sh start_load.sh 192.168.1.109 22222

Collecting results

# cd workload

# sh start_load.sh

Baseline: INFless

Total statistics QPS:x

Scaling Efficiency: x

Throughput Efficiency: x

Notice: More details please see INFless/scripts/README.md.

Experimental Results: The experimental results are plotted with

Matlab (INFless/sourceCode/Matlab). The details are listed as fol-

lowing:

(1) Figure 2(a): INFless/motivation/heat/LantencyHeatmap

_nobatch.m
(2) Figure 2(b): INFless/motivation/heat/LantencyHeatmap_batch.m
(3) Figure 2(c): INFless/motivation/hist/memoyConfigWasteBar.m
(4) Figure 3(a): INFless/motivation/BATCH_comparation

_workload_instanceNum_subfig.m
(5) Figure 3(b): INFless/motivation/hist/comparison

_batch_with_oneToOne.m
(6) Figure 7(a): INFless/method/lstm_OperatorsCount.m
(7) Figure 7(b): INFless/method/resnet_OperatorsCount.m
(8) Figure 8(a): INFless/evaluation/operatorDAGModel/Resnet50.m
(9) Figure 8(b): INFless/evaluation/operatorDAGModel/Mobilenet.m
(10) Figure 8(c): INFless/evaluation/operatorDAGModel/Lstm2365.m
(11) Figure 11(a): INFless/evaluation/throughput/trafficAblation.m
(12) Figure 11(b): INFless/evaluation/throughput/qsSystem.m
(13) Figure 12(a): INFless/evaluation/throughput/overall

_normalized_throughput_across_workload_bar.m
(14) Figure 12(b): INFless/evaluation/throughput/overall

_normalized_throughput_across_SLOs_all_bar.m
(15) Figure 13(a): INFless/evaluation/throughput/batch

_configurations_across_SLOs_INFLess.m
(16) Figure 13(b): INFless/evaluation/throughput/batch

_configurations_across_SLOs_BATCH.m
(17) Figure 13(c): INFless/evaluation/throughput/batch

_configurations_details.m
(18) Figure 15(a): INFless/evaluation/box/SLO_violoation_box.m
(19) Figure 15(b): INFless/evaluation/hist/latency_partition

_150ms_barh.m
(20) Figure 15(c): INFless/evaluation/hist/latency_partition

_350ms_barh.m
(21) Figure 16: INFless/evaluation/hist/Coldstart_bar.m
(22) Figure 17(a): INFless/evaluation/hist/scheduling_latency_bar.m
(23) Figure 17(b): INFless/evaluation/hist/fragement_ratio_bar.m
(24) Figure 18(a): INFless/evaluation/line/Throughput_simulation.m
(25) Figure 18(b): INFless/evaluation/line/Throughput

_simulation_slo.m

A.5 Materials

Available source code: https://github.com/TankLabTJU/INFless/
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