
Rhythm: Component-distinguishable Workload
Deployment in Datacenters

Laiping Zhao
Tianjin Key Lab. of Advanced Networking
(TANKLab), College of Intelligence and

Computing (CIC), Tianjin University
laiping@tju.edu.cn

Yanan Yang
TANKLab, CIC, Tianjin University

ynyang@tju.edu.cn

Kaixuan Zhang
TANKLab, CIC, Tianjin University

kingxzhang@gmail.com

Xiaobo Zhou
TANKLab, CIC, Tianjin University

xiaobo.zhou@tju.edu.cn

Tie Qiu
TANKLab, CIC, Tianjin University

qiutie@tju.edu.cn

Keqiu Li
TANKLab, CIC, Tianjin University

keqiu@tju.edu.cn

Yungang Bao
Inst. of Computing Technology, CAS

baoyg@ict.ac.cn

Abstract
Cloud service providers improve resource utilization by co-
locating latency-critical (LC) workloads with best-effort batch
(BE) jobs in datacenters. However, they usually treat an LC
workload as a whole when allocating resources to BE jobs and
neglect the different features of components of an LC work-
load. This kind of coarse-grained co-location method leaves
a significant room for improvement in resource utilization.

Based on the observation of the inconsistent interference
tolerance abilities of different LC components, we propose
a new abstraction called Servpod, which is a collection of
a LC parts that are deployed on the same physical machine
together, and show its merits on building a fine-grained co-
location framework. The key idea is to differentiate the BE
throughput launched with each LC Servpod, i.e., Servpod
with high interference tolerance ability can be deployed along
with more BE jobs. Based on Servpods, we present Rhythm, a
co-location controller that maximizes the resource utilization
while guaranteeing LC service’s tail latency requirement. It
quantifies the interference tolerance ability of each servpod
through the analysis of tail-latency contribution. We evaluate
Rhythm using LC services in forms of containerized processes
and microservices, and find that it can improve the system
throughput by 31.7%, CPU utilization by 26.2%, and memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00
https://doi.org/10.1145/3342195.3387534

bandwidth utilization by 34% while guaranteeing the SLA
(service level agreement).

ACM Reference Format:
Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu,
Keqiu Li, and Yungang Bao. 2020. Rhythm: Component-distinguishable
Workload Deployment in Datacenters. In Fifteenth European Con-
ference on Computer Systems (EuroSys ’20), April 27–30, 2020,
Heraklion, Greece. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3342195.3387534

1 Introduction
The multitenant sharing nature of cloud computing aggra-
vates contention for shared resources, such as cores, memory,
cache, memory bandwidth, and networks in datacenters. The
resulting disorder of a system, in which the full dimensions of
resource consumption at the instruction-cycle-level (known
as states) become more intractable, causes a long tail latency
for services [13]. For example, the fluctuation range of tail
latency in Google’s latency-critical (LC) service is between
0 and 500ms, and the highest variation difference can even
exceed 600× [38].

To mitigate the disorder caused by the contention, prior
work seeks to enhance control of the resource management
system through two approaches: hardware methods and soft-
ware methods. The hardware methods, such as the Intel RDT
[56] and PARD [43], open control interfaces for differentiat-
ing services at the hardware level for resourcing-on-demand.
Although they are effective in performance isolation, their
adoption requires the new hardware support. The software
methods commonly rely on resource overprovisioning to re-
duce the interference. However, wasteful overprovisioning
results in low resource utilization, thereby increasing the
cost of cloud services. For example, resource reservations by
Twitter could reach up to 80% of total capacity, while their
production cluster’s CPU utilization is constantly below 20%
[16]. Similarly, traces from both Google [62] and Aliyun [40]

1

https://doi.org/10.1145/3342195.3387534
https://doi.org/10.1145/3342195.3387534
https://doi.org/10.1145/3342195.3387534

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

showed that they merely achieve aggregate CPU utilization
of 25-35% and aggregate memory utilization of 40%.

profiling profiling

Profiling-based Feedback-based Hybrid

Plan ahead
(high throughput, high cost)

W/o profile,
control BE
uniformly

Control BE
at machines
differently

machines

Co-schedule
LCs and BEs

complementarily

BE
..

LC
..

..
BE
LC

1
3 M
2

.. 1
3 M
2

..

..

Conservative deployment
(low throughput, low cost)

..

..

LC.1
BE

2 3

M

Aggressive deployment
(high throughput, low cost)

Increased
throughput

..

..

Figure 1. Schematic overview of the workload deployment
method.

Improving the resources utilization of cloud systems while
guaranteeing the user’s experience needs more control from
the management system. We identified the two prevalent ap-
proaches shown in Figure 1. Profiling-based strategy consoli-
dates noncontending applications according to their resource
usage profiles [12, 15, 16, 48, 69, 73, 75, 80]. Feedback-based
strategy deploys workloads directly in machines, but continu-
ously responses to service level agreement (SLA) violation
monitoring using actions, such as system reconfiguration [45]
or resource reallocation [8, 41, 51]. However, profiling-based
strategy generates high throughput at the high cost of profil-
ing. This does not make it easy to deploy them in large-scale
cloud systems widely, due to the large number of continuously
emerging applications and possible consolidations in cloud
today. Without profiling, feedback-based strategy has to con-
trol workloads at the granularity of whole LC or best-effort
batch (BE) jobs uniformly, ignoring the differences among
service parts when the LC service is distributively deployed.
BE jobs are even treated as “second-class citizens”: they
can only be allocated with limited resources and might be
rescheduled at any time for avoiding SLA violations [26].
This coarse-grained and conservative strategy leads to low
throughput.

We suggest to launch BE jobs more aggressively in feed-
back way while capturing a little more profile information
about the solo LC workload (i.e., the hybrid strategy). Lever-
aging an aggressive policy would highly risk SLA violations;
hence, where and how to launch more BE jobs should be very
carefully decided. With the virtualization technique evolv-
ing from VM to container and further to the state-of-the-art
serverless functions [33], the controllable objects on the cloud
providers’ side are becoming more varied and lightweight,
and the control method is becoming more flexible. Therefore,
control at a finer level of granularity is a promising technique
of the next cloud management system. To this end, we de-
sign a fine-grained controller built around the hybrid strategy.
It differentiates the BE throughput launched with each LC

Servpod, a new abstraction which is a collection of a LC ser-
vice parts that are deployed on the same physical machine
together. A Servpod is a service-deployment unit, denoting
the mappings between LC structure and physical machines.

To guide the launch of BE jobs, we analyze the tail-latency
contribution of each Servpod under the solo-run of LC work-
load, to measure their weights in overall tail latency.

The analysis depends on the request sojourn time in each
Servpod. There are several challenges towards this problem.
(1) How can we track a service request and extract its
sojourn time at each Servpod? An LC workload likely con-
sists of many Servpods, and user requests may be processed
by different paths of the service call. While program instru-
mentation can provide accurate measurement on the sojourn
time of each request in each Servpod, it requires a high devel-
opment cost. Thus, we choose the non-intrusive method, that
is, deriving latencies in each Servpod from the large number
of system events generated by processes.
(2) How can we transform the sojourn times in each Serv-
pod into BE control decisions? Following the call path of an
LC request, every Servpod performs different contributions
over the end-to-end tail latency. We define the contribution
for each Servpod using the sojourn time mean, variance and
correlation coefficient, to direct the deployment of BE jobs:
Servpod with small contribution to the tail latency can be
deployed along with more BE jobs.
(3) How can we implement the controller by making use
of the different contributions of Servpods? We derive two
thresholds loadlimit and slacklimit using the contributions
of Servpods. By monitoring the realtime workload and slack
between current tail latency and SLA target, the top controller
in each Servpod continuously makes decisions about adding
or releasing resources of BE jobs and the subcontrollers im-
plement the decisions accordingly.

To address these challenges, we present Rhythm, a cloud
controller that maximizes the resource utilization while guar-
anteeing LC service’s tail latency requirement. Rhythm sup-
ports to track the requests in all Servpods, and derives the
contribution of each Servpod to the end-to-end tail latency. It
also implements a runtime agent at each Servpod, enabling
the aggressive launch of BE jobs at Servpods with less con-
tributions. It carefully isolates interference between LC and
BE jobs utilizing the hardware features, including cache iso-
lation and DVFS (dynamic voltage and frequency scaling)
and software isolation mechanisms (including core isolation,
DRAM isolation and network traffic isolation). In summary,
the contributions of this paper include:

• The insight of the inconsistent interference-tolerance
abilities of different components of LC workload. (§ 2)

• A new abstraction, Servpod, and the analysis of tail-
latency contributions of Servpods that allows distin-
guishable workloads co-location in cloud system (§ 3)

2

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

% of max load

0
2

2
2

4
2

6
2

8
2

10
2

12
9
9

%
 L

a
te

n
c
y
 I

n
c
re

.
(%

)

Master Slave

DVFS CPU_stressstream_dram(big) stream_dram(small) stream_llc(big) stream_llc(small) iperf

(a) Redis: Master vs Slave

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

% of max load

0
2

2
2

4
2

6
2

8
2

10
2

12
2

14

9
9

%
 L

a
te

n
c
y
 I

n
c
re

.
(%

)

Tomcat

Mysql

stream_dram(big) stream_dram(small) stream_llc(big) DVFS iperf CPU_stressstream_llc(small)

(b) E-commerce website: Tomcat vs MySQL

Figure 2. Impact of interference on the 99th percentile latency of LC service: the X-axis represents the interference groups of LC
service components and BE jobs under different percent of the maximum request load. The Y-axis represents the corresponding
increase in 99th percentile latency normalized to the solo-run performance (presented in logarithmic scale).

• A prototype system, Rhythm, designed following the
hybrid strategy: “profiling LC once, feedback control
BE”, which has a high extensibility and flexibility in
traditional processes and microservice scenarios. (§ 3
and § 4)

• A detailed comparative evaluation of Rhythm and non-
component-distinguishable system, shows significant
improvement in the system throughput without SLA
violations. (§ 5)

2 Inconsistent Interference Tolerance Ability
In this section, we show the inconsistent interference-tolerance
feature of components of an LC service, utilizing two typical
applications: the multitier E-commerce website [50] consists
of four components, namely, HAProxy, Tomcat, Amoeba and
MySQL, and the fan-out Redis [61] consists of two com-
ponents, Master and Slave. We generate interference us-
ing five microbenchmarks as BE jobs, namely, CPU-stress
[46], stream-llc [14], stream-dram [14], DVFS and iperf [71],
which can put the pressure on various shared resources. For
evaluating the interference at different intensities of pressure
on DRAM bandwidth and LLC, we also extend stream_dram
(or stream_llc) to two intensity levels: big and small, where
big means saturating the corresponding DRAM bandwidth (or
LLC), while small means occupying only half of the whole
capacity.

Each LC service component is deployed together with a
BE job on the same machine to measure the impact on the
overall 99th percentile latency. For measuring the contention
on cores, we pin the component and CPU-stress on the cores
from the same socket. For measuring LLC interference, we
pin the component and stream-llc to different cores from the
same CPU socket since they have separate L1/L2 cache but
share L3. For measuring interference on DRAM bandwidth,

we use numactl [54] to place the component and stream-
dram on the same socket without CPU core usage overlap. In
addition, we use DVFS to adjust the frequency of processors
holding the component to evaluate its impact on tail latency.
All experiments share the same settings with those in § 5, and
each run is repeated 5 times for reducing errors.

We evaluate the performance degradations of two LC ser-
vices under the interference over increased request load, the
characterization results are presented in Figure 2.

Redis: Figure 2a shows the increase in latency when we
coschedule the Master or Slave of Redis with BE jobs. We see
that the performance degradation under interference generally
increases over the request load. Master is more sensitive than
Slave in most interference groups, and their difference varies
with the BE jobs. In particular, since the Master strongly
relies on LLC, memory and network bandwidth for both re-
quests distribution and data operation, it is particularly more
sensitive to interference caused by stream-dram(big), stream-
llc(big) and CPU-stress than Slave. The difference between
Master and Slave even exceeds 28× under the same inter-
ference from stream-llc(big). For interference from stream-
dram(small), stream-llc(small) and DVFS, the differences of
the latency increase between Master and Slave also reach
155.1%, 181.1% and 122%, respectively. CPU-stress gener-
ates the least interference, which increases the latency by
an average of 113.1% at the Master and 22% at the Slave,
resulting in 91.1% difference.

E-commmerce website: Figure 2b shows the increase in
latency when we coschedule the Tomcat or MySQL of E-
commmerce with BE jobs. MySQL is more sensitive to in-
terference generated by stream_dram (big), stream_llc(big),
CPU-stress and iperf. The differences of the latency increase
between Tomcat and MySQL reach 435.8% and 35.1% under
the interference from stream_dram (big) and CPU-stress. In

3

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

case of stream_llc(big) and iperf, the difference between Tom-
cat and MySQL reaches more than 35× and 10×, respectively
(The difference in iperf in Figure 2b is not obvious because
the Y-axis is presented in logarithmic scale). Tomcat is more
sensitive to interference generated by DVFS, and the differ-
ences between Tomcat and MySQL is 416.7%. In groups of
stream_dram(small) and stream_llc(small), the differences
are 71% and 13.2%, respectively.

Hence, the impact of interference on different components
of LC service shows significant inconsistency. While resource
contention at the high-sensitive components easily causes
SLA violation, the other less-sensitive components still have
room for more BE deployment. This makes the existing work
that control the co-location of LC workload and BE jobs
uniformly less-efficient due to their neglect of the different
interference-tolerance abilities of components (aka "Law of
the Minimum" [24]).

3 Rhythm Design
Given the observation that different components of an LC
service have inconsistent interference-tolerance abilities, it
is possible to implement a distinguishable fine-grained work-
loads co-location controller to improve the system throughput
in datacenter. In this section, we present the design of Rhythm
and show where and how to launch BE jobs making use of
the features of LC service components.

3.1 The Servpod Abstraction
We introduce Servpod, a collection of service components
from one LC workload that are deployed together on the same
physical machine. If an LC workload can be represented by
a directed acyclic graph (DAG), where the set of vertices
represents LC components and edges denotes the precedence
relation among them, then a Servpod could include multiple
LC components if they are scheduled on the same physical
machine. Hence, Servpod reveals the mappings between phys-
ical machines and its service structure. The number of the
Servpods equals the number of deployed physical machines.

A Servpod could be one or multiple processes, contain-
ers or microservices [21]. We do not discuss the scheduling
problem of LC components here, but assume that an LC has
already been scheduled on physical machines, generating
multiple Servpods. Given the distributed Servpods, we next
explore how to deploy the number of BE jobs differently
along with them.

3.2 System Overview
The insight of Rhythm is that, while Servpods with larger
contributions to the tail latency have to be controlled con-
servatively, we shall allow the others to launch BE jobs ag-
gressively. Quantifying contribuitons can be done through
an offline profiling of Servpods or an online analysis of real-
time monitoring. We choose the offline profiling way for two

Runtime Control

server 1

BE

server 2

LC
BE

server 3

LC
server 4

BE
LC

BE

3. Controller

LC

slacklimit 2slacklimit 1

BE jobs

1

2

3

4

2. Contribution Analyzer

2 3 41

Overall Latency

mean, variance, correlation

Servpod Contributions
C1 C2 C3 C4

1. Request Tracer

Se
rv

ic
e

ca
ll p

at
h

of
 a

 re
qu

es
t

LC service

…

Input

Deploy

slacklimit 3 slacklimit 4

User
Servpod

Figure 3. Design of Rhythm.

reasons: (1) As the contribuiton of a Servpod depends on var-
ious factors, like the sojourn time, the access load, an online
exploration process may take a very long time until collecting
sufficient data, resulting in frequent SLA violations during
this period. (2) Offline profiling can be conducted along with
the necessary stress test before the launch of a service, saving
much profiling cost. As shown in Figure 3, we first charac-
terize the contributions of LC Servpods using two modules:
request tracer and contribution analyzer. Then, we manage
the running of BE jobs using a controller at each physical
machine.

The offline profiling of a Servpod’s contribution on the
overall tail-latency includes two ways: Directed way requires
to collect the sojourn times of requests in each Servpod, while
the contribution can be derived through statistical modeling
and analysis on sojourn times. Indirected way, like "bubble
pressure" [48], measures the performance degradation of LC
service (e.g., increasing of tail-latency, IPC) by putting a
tunable amount of pressure on individual Servpod, then the
contribution can be defined as the “bubble size” it can tolerate
while guaranteeing SLA. However, as shown in Figure 2, a
Servpod performs different sensitivities under the interfer-
ences from different bubbles [57]. In addition, variation of
the workload is also an non-negligible factor affecting the
LC service’s performance. Using the “bubble pressure” that
generates only one-dimensional interference to measure the
contribution of Servpod is surely insufficient. For example. a
CPU-intensive Servpod that contributes a lot to the overall tail
latency could tolerate strong interferences generated by an
I/O-intensive bubble. It is also impossible to design a single
bubble suite that is general enough to represent all kinds of
BE jobs. Hence, we choose the directed way to characterize
the contributions of Servpods.

In particular, the request tracer identifies the service call
paths of requests and records their sojourn time at each Serv-
pod when LC workload runs solely. Then, the contribution
analyzer derives the contribution of each Servpod to the tail
latency using the mean, variance and the Pearson correlation
coefficient of sojourn times. This characterization relies solely

4

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece

on the LC service itself, and its cost increases linearly over
the number of Servpods. Hence, compared with the profiling-
based approaches that measure the interference of M×N com-
binations by M LC services and N BE jobs, Rhythm reduces
the cost to M. The controller adopts a contribution-based
thresholding methodology to control the resource allocation
for BE jobs at every machine. It first derives the control thresh-
olds for different Servpods using a thresholding algorithm,
then treats BEs uniformly using a trial-and-error approach for
avoiding SLA violations.

For a newly deployed LC service, we activate both the
request tracer and contribution analyzer only once for char-
acterizing its Servpods’ contributions. While each controller
continues running independently for controlling BE jobs
along with each Servpod, its thresholding algorithm (i.e.,
the only step that needs the coordination among Servpods)
also runs only once to derive thresholds. Hence, the charac-
terization cost is low and Rhythm has good scalability.

3.3 Request Tracer
Each request towards an LC service may pass a number of
different Servpods. The request tracer identifies the causal
path of a request and constructs a causal path graph (CPG),
which is a directed acyclic graph G(V,E) describing the re-
quest process. Vertices in V are event sets of Servpods, and
edges E represent causal relations between events. To record
the sojourn time in which a request stays at a Servpod, we
also need to record the arrival and departure time at each
Servpod. When there are multiple components in a Servpod,
we only record the arrival time at the entry component and
the departure time at the exit component.

The key challenge is to capture the system events in V and
find the causality of them. We collect the relevant system
calls at LC Servpods. However, the calling stack in a Servpod
could be associated with a depth of more than hundreds of
system calls due to the frequent switches between the user
space and kernel. Many of them are generated by other unre-
lated processes, including operating system processes or other
applications. To filter the unrelated events, we record four spe-
cific events in each LC Servpod: syscall_accept indicates the
acceptance of a request; tcp_sendmsg represents the sending
of data package; tcp_rcvmsg represents the receiving of data
package; and syscall_close is the close of a request call, where
we denote them as ACCEPT, RECV, SEND and CLOSE,
respectively. Each event is structured with four attributes:
event type, timestamp, context identifier and message identi-
fier. In particular, the context identifier is defined as a quad:
< hostIP, programName, processID, threadID >, which can
be used to filter out noise system calls from unrelated pro-
cesses. The message identifier is defined as a five-tuple: <
senderIP,senderPort,receiverIP,receivePort,messageSize>,
which can be used to filter out noises from unrelated commu-
nications.

Client

Haproxy

Tomcat

Amoeba

Mysql

)0(
1,0S)0(

0,1R

)4(
4,3R)4(

3,4S

)2(
2,1R)2(

3,2S)2(
2,3R)2(

3,2S)2(
2,3R)2(

1,2S

)3(
3,2R)3(

2,3S)3(
3,2R)3(

4,3S)3(
3,4R)3(

2,3S

)1(
1,0R)1(

2,1S)1(
1,2R)1(

1,0S event)(
,
k
jiS

message relation
context relation

Figure 4. The CPG constructed by a request to e-commerce.
Next, we show how to identify the causality of these events,

including intraServpod causality and interServpod causal-
ity. IntraServpod causality denotes the causality of a pair
of RECV and SEND events inside a Servpod. We use the
context identifier to identify their causality. That is, a RECV
event happens before a SEND event if they share the same
hostIP, program name, process ID and thread ID. InterServ-
pod causality denotes the causality of a pair of SEND and
RECV events between neighbor Servpods. A SEND event
happens before a RECV event at the neighbor Servpod if they
share the same message identifier.

Denote by S(k)
i, j (or R(k)

i, j) the SEND (or RECV) event recorded
in node k; i, j represents the data flow from node i to j. Fig-
ure 4 shows an example CPG constructed by a request to
E-commerce. Note that there may be hundreds of system
events in the process, we only list part of them here.

Client

CNode1

CNode2

)0(
1,0S

)2(
1,2S)2(

2,1R)2(
2,1R)2(

1,2S

)1(
1,0R)1(

1,0R

)0(
1,0S

)1(
2,1S)1(

2,1S)1(
1,2R)1(

0,1S

)0(
0,1R

)1(
2,1R)1(

0,1S

)0(
0,1R Context Order

request A
request B

Figure 5. IntraServpod causality: request B is issued earlier
by Servpod1, but returned later than request A.

How is the intraServpod causality of nonblocking threads
identified? Each RECV event is matched with a SEND event
with respect to their order of occurrence (i.e., timestamp).
If the LC thread runs in blocking mode, this order can be
detected easily using the context identifier. In case of non-
blocking threads, a later-issued request may return earlier
than an earlier-issued request (Figure 5). Since they may
share the same context identifier, the mappings of RECV
and SEND of them would be incorrect, resulting in an in-
correct sojourn time at the Servpod. We avoid this prob-
lem by analyzing the mean sojourn time of all requests in
the design of the contribution analyzer (Equations 1-3), in-
stead of using each sojourn time directly. For example, the
mean sojourn time of request A and B at Servpod1 in Fig-
ure 5 is not affected by the mismatching, because we have
(S(1)

1,2 −R(1)
0,1) + (S

(1)
1,0 −R(1)

2,1) + (S
′ (1)
1,2 −R

′ (1)
0,1) + (S

′ (1)
1,0 −R

′ (1)
2,1) =

(S(1)
1,2 −R

′ (1)
0,1)+ (S

(1)
1,0 −R(1)

2,1)+ (S
′ (1)
1,2 −R(1)

0,1)+ (S
′ (1)
1,0 −R

′ (1)
2,1).

How is the interServpod causality of persistent TCP
connections identified? If the communication between LC
neighbor Servpods is implemented using persistent TCP con-
nections, multiple requests may share the same message iden-
tifier. In this case, pairing SEND and RECV events with

5

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

respect to their order of occurrence (i.e., timestamp) could
also lead to mismatching. Similar to the identification of in-
traServpod causality, we also adopt the sojourn time mean of
communications of all requests in the design of the contribu-
tion analyzer.

3.4 Contribution Analyzer

1 13 25 37 49 61 73 85

% of max load

0

50

100

150

200

250

L
a

te
n

c
y
 (

m
s
)

Haproxy

Tomcat

Amoeba

MySQL

99th

(a) Average sojourn time

1 13 25 37 49 61 73 85

% of max load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o

e
ff

ic
ie

n
t

o
f

v
a

ri
a

ti
o

n

Haproxy

Tomcat

Amoeba

MySQL

1 13 25 37 49 61 73 85

% of max load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o

e
ff

ic
ie

n
t

o
f

v
a

ri
a

ti
o

n

Haproxy

Tomcat

Amoeba

MySQL

(b) Normalized coefficient of varia-
tions

Figure 6. The average sojourn time of Servpods in E-
commerce website and their normalized coefficient of varia-
tions collected in solo-run.

Figure 6a shows the average sojourn time of the four
Servpods of E-commerce and the overall 99th percentile la-
tency under different request loads. Figure 6b shows the nor-
malized coefficient of variation of their sojourn times. We
find that, HAProxy contributes less than 5% of the overall
latency, while its variance takes more than 20% among four
Servpods. Amoeba’s sojourn time is also small but very stable,
i.e., its coefficient of variance is the smallest. For the MySQL
and Tomcat, when the load is less than 50% of the maxload,
MySQL has a smaller average sojourn time than Tomcat, and
when the load exceeds 50%, its sojourn time increases much
faster than that of Tomcat. However, MySQL’s variance is
always much larger than Tomcat. Based on the observation,
we consider three principles that guide our definition of con-
tribution:

(1) Servpods with a higher average sojourn time contribute
more to tail latency. The first principle highlights the aver-
age sojourn time of each Servpod. Tail latency surely in-
creases over each Servpod’s average sojourn time. For exam-
ple, MySQL contributes the most on 99th percentile latency
when the load is high in Figure 6a.

(2) Servpods with higher sojourn time variance contribute
more to tail latency. This principle relates tail latency to the
fluctuation characteristic of each Servpod, since the fluctua-
tions constitute the "heavy-tail" of overall latency. For exam-
ple, while Tomcat and MySQL have a similar average sojourn
time when the request load is in the range [25%,49%]. How-
ever, the 99th percentile latency increases significantly due to
the high variance of MySQL (Figure 6b).

(3) Servpods that are highly correlated with the tail latency
contribute more to tail latency. Suppose there exists a Servpod
X which has a constant mean and coefficient of variance of
sojourn times over different loads, then the vary of tail latency
would be independent of X if the contribution is derived

merely based on the mean and normalized and coefficient
of variance. Hence, we also analyze the correlation between
each Servpod’s sojourn time and the tail latency, and take it
as an important factor of the contribution.

Following the principles above, we next show how to de-
rive the contribution of a Servpod. Since the request sojourn
time at each Servpod may be incorrect due to the mismatch
of SEND and RECV, we use the mean sojourn time in the
definition. Denote Ti as the average sojourn time of Servpod
i under all load levels and T j

i as the average sojourn time of
Servpod i under load j; then, we have Ti = ∑

m
j=1 T j

i /m, where
m is the number of loads we used. We derive the weight of
average sojourn time by Servpod i’s as follows, where n is
the number of Servpods.

Pi =
T i

n
∑

k=1
T k

(1)

We use the Pearson Correlation Coefficient (ρTi,Ttail) to
evaluate the correlation between Servpod i and the overall tail
latency of the LC service (Ttail denotes the overall tail latency,
and tail could be the 99th, 99.9th percentile, etc.). Let T j

tail
be the tail latency under load j, then, we have,

ρTi,Ttail =

m
∑
j=1

(T j
i −T i) (T

j
tail −T tail)√

m
∑
j=1

(T j
i −T i)

2
√

m
∑
j=1

(T j
tail −T tail)

2
(2)

We denote V as the normalized coefficient of variation
(V) to derive the contribution by the Servpod i’s variance as
follows,

Vi =
1
T i

√
1

m(m−1)

m

∑
j=1

(T j
i −T i)

2
(3)

Finally, we define the contribution of Servpod i using their
product:

Ci = f (ρTi,Ttail ,Pi,Vi) = ρTi,Ttail PiVi (4)
If there exists fan-out in a request, the end-to-end latency

is determined by the latency of the critical path, i.e., the path
(denoted by R) with the longest time. A Servpod i not on
R can tolerate stronger interference than those on R, and its
contribution can be scaled down to:

Ci = αiρTi,Ttail PiVi (5)

where αi = ∑ j∈⌝Ri Tj/∑k∈R Tk, and ⌝Ri denotes the Servpod
set on the path that is non-critical but longest among all paths
through Servpod i.

Note that Equation 5 may not be the only way to define the
contribution. We validate its rationality though a comparative
analysis between Servpod sensitivity and contribution. Figure
7 shows their correlation: The x-axis depicts the contributions
of the four Servpods of E-commerce, and the y-axis shows
the sensitivity of them, which is defined as the increase in the

6

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10
mixed

Haproxy

Tomcat

Amoeba

MySQL

0 0.05 0.1 0.15 0.2
0

1.6

3.2

4.8

6.4

8
stream-dram

0 0.05 0.1 0.15 0.2

Servpod Contributions

0

0.3

0.6

0.9

1.2

S
e
rv

p
o
d
 S

e
n
s
it
iv

it
y

CPU-stress

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10
stream-llc

Figure 7. Servpod sensitivity vs contribuitions: the increase
in the 99th percentile latency of E-commerce when a single
Servpod is interfered by different BEs: (1) mixed BEs of
wordcount, imageClassify, lstm, CPU-stress, stream-dram
and stream-llc, (2) Stream-dram, (3) CPU-stress, (4) Stream-
llc.

99th percentile latency under interference compared to that
under the solo-run. We find that the sensitivity is positively
correlated with the contribution no matter what the BE is,
proving that a Servpod with higher contribution is usually
more sensitive to interference. We implement the Servpod-
level control in algorithm 1 based on this contribution, and the
experimental results show it works well. (See Figure 9-11).

3.5 Controller
Given the contributions of LC Servpods, we next present
how the controller operates to control the start/stop of BE
workloads. We design a controller running as an agent at every
machine holding the LC Servpod. It adopts a hierarchical
architecture: a top-level controller and four subcontrollers.
The top-level controller makes decisions on the BE jobs,
including a load-based decision and a slack-based decision.
The four subcontrollers increase or decrease the resources
allocated to BE jobs following the control instructions by the
top-level controller. In particular, top-level controllers first
coordinate with each other to derive two thresholds: loadlimit
and slacklimit using the thresholding mechanism. Then, each
controller runs independently to control BE jobs according
to thresholds. The controller scales well as the number of
Servpods increases because they do not have interactions
anymore after finding thresholds.

3.5.1 Thresholding Mechanisms. Under the solo-run of
the LC service, we derive two thresholds of loadlimit and
slacklimit in each machine using the request load and con-
tributions of Servpods. Since contributions vary over LC
Servpods, the thresholds are also different. In particular, load-
limit denotes the “switch” determining whether or not to run

BE jobs; slacklimit decides how many resources are allocated
to BE jobs.

0 10 20 30 40 50 60 70 80 90100

% of max load

0

0.2

0.4

0.6

0.8

C
o

V

CoV

Average

(a) MySQL

0 10 20 30 40 50 60 70 80 90100

% of max load

0

0.2

0.4

0.6

0.8

C
o

V

CoV

Average

(b) Tomcat

Figure 8. The CoV of Servpod sojourn times increase over re-
quest loads. Decide the loadlimit of Servpods in E-commerce
using the first load point whose fluctuation is greater than the
average. (CoV: normalized coefficient of variation).

Loadlimit: The threshold loadlimit denotes the upper bound
of the request load of the LC service for allowing the run-
ning of BE jobs along with an LC Servpod. We configure
this threshold using the CoV of sojourn times across different
requests at each Servpod. Figure 8a shows the volatility of
CoV by the MySQL Servpod over the request load. We see
that the fluctuation tends to increase significantly when the
request load exceeds 76% of the maximum allowable load.
We choose loadlimit as the first load point whose fluctuation
is greater than the average. That is, we have loadlimit = 76%
for the MySQL of the E-commerce website, meaning that if
the load towards MySQL exceeds 76% of the maximum al-
lowable load, we have to suspend all BE jobs on this MySQL
machine. In the case of Tomcat, the loadlimit is 87% (Figure
8b).

Slacklimit: Let slack be the gap between the current tail
latency and latency target in SLA. The threshold slacklimit
denotes the lower bound of slack for allowing the growth of
BE jobs. It is inversely related to the Servpod’s interference-
tolerance factor. If a Servpod has a small contribution to the
overall latency, we only need a small slacklimit so that more
BE jobs can be deployed in this machine, or the subcontrollers
can allocate more resources to BE jobs. We design an iterative
algorithm to find the best slacklimit for each machine based
on LC Servpods’ contributions.

Algorithm 1 presents the details. We first normalize the
contribution of each Servpod among all LC Servpods and
initialize the slacklimit of each Servpod with 1.0. The nor-
malized contribution will be used as a stepsize for updating
the slacklimit. The algorithm proceeds in a while loop until
finding the minimum slacklimit with the SLA guarantee. In
each loop, we gradually decrease the value of the slacklimit
of each Servpod by their respective stepSize. Then, we run
the LC workload at this configuration for a while. If the SLA
is violated, we step backward and update the slacklimit.

Algorithm 1 may have different outputs of slacklimit de-
pending on the BE used during run_system(curLimit). We
recommend to run the algorithm with representative, mixed-
intensive BEs and run multiple times to increase its accu-
racy. In our experiment, the best slacklimit for Tomcat and

7

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

Algorithm 1: findSlacklimit(Ci)
Input: contribution of Servpod: Ci, ∀i ∈ [1..n];
Output: slacklimit for Servpod i;

1 stepSize = 1−Ci/∑
m
i=1 Ci ;

2 slacklimit = curLimit = 1.0; // Initialization ;
3 SLA_violation = f alse ;
4 while curLimit > 0 do
5 curLimit = curLimit − stepSize ;
6 run_system (curLimit) ;

// Running for 10 minutes ;
7 SLA_violation=SLA_evaluation() ;
8 if SLA_violation = true then
9 slacklimit = Record.pop() ;

10 break;
11 else
12 Record.push(curLimit) ;

HAProxy are 0.078 and 0.032, respectively, whereas for MySQL
and Amoeba, they are 0.347 and 0.04, respectively. Hence,
we can launch many more BE jobs on Amoeba, Tomcat and
HAProxy than on MySQL.

3.5.2 Control Operation. The controller in each Servpod
manages the launch of BE jobs and their resource alloca-
tions through the collaboration of one top-controller and four
subcontrollers.
Top controller: It compares the real-time request load and
slack with the loadlimit and slacklimit and manages the run-
ning of BE jobs with five actions: StopBE, CutBE, Disallow-
BEGrowth, AllowBEGrowth, and SuspendBE. In particular,

1. StopBE immediately kills all the running BE jobs and
releases all their resources.

2. SuspendBE pauses all of the running BE jobs, but they
can still keep their memory space.

3. CutBE allows the existing BE jobs to continue running,
but reduces part of their allocated resources.

4. DisallowBEGrowth does not allow the number of BE
jobs to increase, but the existing BE jobs can still hold
their resources and run continually.

5. AllowBEGrowth allows subcontrollers to allocate more
resources to BE jobs and increase the number of BE
jobs.

Denote T SLA
tail as the tail latency requirement stated in SLA.

The decision-making algorithm is shown in Algorithm 2.
Subcontroller: There are four subcontrollers in each machine.
They periodically adjust the resource allocations between LC
service and BE jobs following instructions from top controller.
While frequent monitoring and adjustment are effective to
detect the load burst and protect the SLA of LC workload, it
also causes more runtime overhead. To assess the tradeoffs

Algorithm 2: Decision making by top controller

1 Estimate slack based on monitored latency and SLA;
2 while True do
3 slack = (T SLA

tail −Ttail)/T SLA
tail ;

4 if slack < 0 then
5 StopBE();
6 else if workload > loadLimit then
7 SuspendBE();
8 else if 0 < slack < slackLimit/2 then
9 CutBE();

10 else if slackLimit/2 < slack < slackLimit then
11 DisallowBEGrowth();
12 else
13 AllowBEGrowth();

14 sleep(2 seconds);

between efficiency and performance, we set the operation pe-
riod of each controller thread to 2 seconds. The experimental
results also validate the reliability of our design (Figure 15).

1. CPU/LLC subcontroller: We adopt the same control as
in Heracles [41] for allocating cores, LLC, and memory
bandwidth. When it is allowed to deploy BE jobs, a BE
job is activated and configured with one core and 10%
LLC. Both CutBE() and AllowBEGrowth() adjust the
cores and LLC of BE jobs at the granularity of one core
and 10% LLC, until no more resources are available or
all BE’s resources have been released.

2. Frequency subcontroller: It monitors the power of the
CPU periodically and adjusts the frequency using DVFS.
If the power has exceeded 80% of TDP (thermal dissi-
pation power) and the frequency of the LC service is
less than the minimum allowable frequency (for meet-
ing SLA), it will reduce the operating frequency of BE
jobs at the stepsize 100 MHz to ensure sufficient power
for the LC service.

3. Memory subcontroller: It monitors the memory uti-
lization of the LC service. A newly started BE job is
initialized with 2 GB of memory, and the adjustment
stepsize for CutBE() and AllowBEGrowth() is 100 MB.

4. Network subcontroller: It continuously monitors the
bandwidth of LC services (BLC), and allocates band-
width of Blink −1.2BLC to BE jobs.

4 Implementation
We implemented a prototype for Rhythm in about 5.3KLOC
of C, Java and Linux Shell. It runs on Linux operating system,
and supports the automatic profiling of Servpods using a load
generator for generating a broad spectrum of access loads
and a SystemTap [30]-based system events analysis tool. It
cooperates with Linux container technology to manage the re-
source allocation for LC services and BE jobs. It also provides

8

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Table 1. LC workloads and BE jobs.

LC Workloads BE Jobs
Workload Domain Servpods MaxLoad SLA Containers Workload Domain -intensive

E-commerce [50] TPC-W website
Haproxy,Tomcat,
Amoeba,MySQL

1300 QPS 250 ms 16
CPU-stress [46] CPU stress testing tool CPU
Stream-llc [14] LLC-benchmark in iBench LLC

Redis [61] Key-value store Master,Slave 86K QPS 1.15 ms 18 Stream-dram[14] DRAM-benchmark in iBench DRAM

Solr [67] Search
Apache+Solr,

Zookeeper
400 QPS 350 ms 15 iperf [71] Network stress testing tool Network

Elasticsearch [18] Index Engine Index,Kibana 750 QPS 200 ms 12 Wordcount [23] Big data analytics mixed

Elgg [19] Social Network
Nginx+PHP-FPM,

Memcached,MySQL
200 QPS 320 ms 8 ImageClassify Image classification on CycleGAN [85] mixed

SNMS [22] Microservice
UserService,frontend,

MediaService
1500 QPS 380 ms 30 LSTM Deep learning on Tensorflow [1] mixed

APIs on latency and system status monitoring, contribution
analysis, parameters exchanging, BE deploying and resource
allocation updating in each Servpod agent. The interactions
with operating system are mainly implemented through JDK
runtime library and Linux shell interface.
Isolation: For mitigating the performance interference be-
tween the LC service and BE jobs, we utilize resource isola-
tion mechanisms as follows: (1) Core/thread isolation: Rhythm
uses the cpuset cgroups of the Linux operating system to
bind LC and BE jobs on different physical cores to reduce the
interference caused by thread contention. (2) LLC isolation:
Rhythm uses Intel CAT (cache allocation technology) to parti-
tion the LLC into two parts: one is for the LC workload and
the other is for BE jobs. (3) Network isolation: Rhythm uses
the qdisc in the Linux operating system to control bandwidth
allocation for the traffic flows of both LC and BE jobs. (4)
Power isolation: Rhythm uses the running average power limit
(RAPL) to monitor the CPU power consumption in each CPU
socket and DVFS to redistribute power among different cores.
Interact with scheduler: When an LC arrives, the scheduler
firstly decides the schedule of its components. Co-located
components form servpods, which are profiled against the
load generator for deriving loadlimit and slacklimit. Then,
the top controller in each physical machine decides if it is
allowable to deploy BEs locally. It notifies the scheduler
whether it accepts BEs or not. If yes, the scheduler checks
the waiting queue of BE jobs and dispatches them to physical
machines with sufficient resources. After receiving BEs, the
subcontrollers at local physical machine decide the specific
resource allocation for BEs.
System integration: Rhythm can be integrated into container
management framework like Kubernetes [39] or serverless
cloud system. To make Rhythm work in Kubernetes, we need
to (1) extend the cAdvisor in kubelet of Kubernetes to sup-
port the measurement of utilization of memory bandwidth,
frequency&power and network traffic; (2) enhance the config-
uration module of Kubernetes to support the runtime control
of the resource allocation as Rhythm’s controller agent; (3) as-
sociate the scheduler of Kubernetes with the controller agent
for providing feedback to scheduling algorithms.

5 Evaluation
5.1 Methodology
Workloads: Table 1 summarizes the LC and BE workloads
we used to evaluate the efficiency of Rhythm. In particular,
the maximum allowable request load (i.e., MaxLoad) is mea-
sured when the arrival speed approaches to the maximum
processing speed. Their SLAs are not defined arbitrarily, but
following the principle: each LC service runs at its maximum
allowable request load without interference over 30 minutes,
and we record the 99th percentile latency per second and set
the worst one as the SLA. We use query per second (QPS)
to indicate the number of concurrent queries processed per
second. We also deploy seven BE workloads: Four of them
are synthetic for putting strong pressure on a specific resource
(i.e., CPU, LLC, DRAM, and network), and the other three
are real workloads, putting pressure on multiple resources.
Metrics: We colocate an LC service with the BE jobs, and
measure the system’s CPU and memory utilization, and power
consumption. We also use the metric of EMU (effective ma-
chine utilization) to measure the overall system throughput. In
particular, EMU = LC T hroughput+BE T hroughput, where
LC T hroughput denotes the request load for LC service nor-
malized to its maximum allowable load, and BE T hroughput
denotes the average number of BE jobs successfully finished
per hour normalized to when it runs alone on a machine. Note
that EMU may exceed 100% due to the resource sharing
between the LC service and BE jobs.

All the experimental results are compared against Hera-
cles [41], which is a feedback-based method, but does not
distinguish between Servpods: (1) It disables BE jobs at all
machines whenever the load exceeds 85%. (2) It disallows
the growth of BE jobs whenever the slack between the current
tail latency and SLA target is less than 10%. We observe
that the measured SLA on our testbed is larger than those in
Heracles because the different software configurations and
hardware environments we used. To make a fair comparison,
our implementation of Heracles [41] also conducts its control
using the same SLA as in Table 1.
Testbed: LC service and BE jobs are deployed on a cluster
with four physical machines, with each configured with 40

9

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao5 25 45 65 85

% of max load

0
20
40
60
80

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

stream-llc stream-dram CPU-stress LSTM imageClassify wordcount improvements

5 25 45 65 85

% of max load

0

0.2

0.4

0.6

0.8

1

B
E

 T
h
ro

u
g
h
p
u
t

(a) Tomcat/E-commerce

5 25 45 65 85

% of max load

0

0.2

0.4

0.6

0.8

1

B
E

 T
h
ro

u
g
h
p
u
t

(b) Slave/Redis

5 25 45 65 85

% of max load

0

0.2

0.4

0.6

0.8

1

B
E

 T
h
ro

u
g
h
p
u
t

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

0

0.2

0.4

0.6

0.8

1

B
E

 T
h
ro

u
g
h
p
u
t

(d) Memcached/Elgg

5 25 45 65 85

% of max load

0

0.2

0.4

0.6

0.8

1

B
E

 T
h
ro

u
g
h
p
u
t

(e) Kibana/Elasticsearch

Figure 9. The BE throughput at Servpods under different loads.

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(a) Tomcat/E-commerce

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(b) Slave/Redis

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(d) Memcached/Elgg

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(e) Kibana/Elasticsearch

Figure 10. The CPU utilization at Servpods under different loads.

5 25 45 65 85

% of max load

0

20

40

60

80

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(a) Tomcat/E-commerce

5 25 45 65 85

% of max load

0

20

40

60

80

100

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(b) Slave/Redis

5 25 45 65 85

% of max load

0

25

50

75

100
M

e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(c) Zookeeper/Solr

5 25 45 65 85

% of max load

0

20

40

60

80

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(d) Memcached/Elgg

5 25 45 65 85

% of max load

0

20

40

60

80

100

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(e) Kibana/Elasticsearch

Figure 11. The memory bandwidth utilization at Servpods under different loads.

cores of a quad-socket Intel Xeon E7-4820 v4 @ 2.0 GHz and
64 GB of DRAM per socket. Each core has 32 KB of L1 cache
and 256 KB of L2 cache, and each socket shares 20 MB of
L3 cache. The operating system is Ubuntu 14.04 with kernel
version 4.4.0-31. We utilize containers for deploying multiple
instances for LC workloads. The detailed configurations of
workloads are shown in Table 1. Although each container
is configured with a specific capacity initially, its unused
resources can be allocated to BE jobs through the container
resource control interface.
Overhead: After deploying Rhythm in the system, we mea-
sure its overhead and find that the request tracer only con-
sumes approximately 6% of the CPU and 3 MB of memory,
and each controller agent runs every 2 seconds only consumes
3.6% of the CPU and less than 50 MB of memory. Rhythm
collects request sojourn time in each Servpod by solo-run
LC service only once, the off-line profiling takes negligible
overhead while the runtime control only occupies a small
amount of resources.

5.2 Constant Load
We first evaluate the throughput and resource utilization at
each Servpod. Then, we present the overall performance eval-
uation under constant load.

5.2.1 Servpod Analysis. Due to space limitations, we only
show one Servpod for each service: Tomcat/E-commerce,
Slave/Redis, Zookeeper/Solr, Memcached/Elgg, and Kibana

/Elasticsearch. Figures 9-11 show the BE throughput, CPU uti-
lization and memory bandwidth utilization at these Servpods.
We see that Rhythm is particularly effective when the load
exceeds 65% of the max load. While Heracles can launch
BE jobs at a lower load, no co-location exists when the load
is set as 85% of the max load because Heracles does not
allow colocation when the load > 0.85. Hence, in this case,
the BE throughput, CPU utilization and memory bandwidth
utilization by BE jobs are all zero. In contrast, Rhythm allows
deploying BE jobs at the load > 0.85 since the loadlimits of
Tomcat, Slave, Zookeeper, Memcached and Kibana are 0.87,
0.91, 0.93, 0.87 and 0.9, respectively.

In Figure 9, we see that Rhythm increases BE throughput by
an average of 0.196, 0.296, 0.41, 0.185, and 0.194 compared
with that of Heracles for the five LC Servpods. In particu-
lar, Zookeeper is deployed with the most BE jobs due to its
large loadlimit = 0.93 and small slacklimit = 0.035. As we
increase the load of the LC service, the BE throughput is
reduced due to the operation control by the Rhythm controller.
For the CPU utilization in Figure 10, when we coschedule
Servpods with CPU-stress, the CPU utilization at all machines
could approach 80% at the 5% load due to the CPU-intensive
nature of CPU-stress. LSTM can also utilizes CPU resources
at more than 70%, because the training phase of LSTM heav-
ily consumes CPU resources. When they are colocated with
other BE jobs, although it cannot achieve the same CPU uti-
lization, Rhythm still improves CPU utilization by an average
of 7.98%, 11.44%, 27.59%, 8.4%, and 10.44%. For the mem-
ory bandwidth utilization in Figure 11, we see that Rhythm

10

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece
5 25 45 65 85

% of max load

0
30
60
90

120

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

stream-llc stream-dram CPU-stress LSTM imageClassify wordcount

5 25 45 65 85

% of max load

0

10

20

30

40

50

E
M

U
 (

%
)

(a) E-commerce

5 25 45 65 85

% of max load

0

10

20

30

40

50

E
M

U
 (

%
)

(b) Redis

5 25 45 65 85

% of max load

0
10
20
30
40
50
60

E
M

U
 (

%
)

(c) Solr

5 25 45 65 85

% of max load

0

10

20

30

40

50

E
M

U
 (

%
)

(d) Elgg

5 25 45 65 85

% of max load

0

10

20

30

40

E
M

U
 (

%
)

(e) Elasticsearch

Figure 12. EMU improvements ((EMURhythm −EMUHeracles)/EMUHeracles) under different loads.

5 25 45 65 85

% of max load

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(a) E-commerce

5 25 45 65 85

% of max load

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(b) Redis

5 25 45 65 85

% of max load

0

30

60

90

120

150

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(c) Solr

5 25 45 65 85

% of max load

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(d) Elgg

5 25 45 65 85

% of max load

0

30

60

90

120

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(e) Elasticsearch

Figure 13. CPU utilization improvements ((CPURhythm −CPUHeracles)/CPUHeracles) under different loads.

5 25 45 65 85

% of max load

0

30

60

90

120

150

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(a) E-commerce

5 25 45 65 85

% of max load

0
10
20
30
40
50
60

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(b) Redis

5 25 45 65 85

% of max load

0

30

60

90

120

150

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(c) Solr

5 25 45 65 85

% of max load

0

20

40

60

80

100

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(d) Elgg

5 25 45 65 85

% of max load

0

30

60

90

120

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

(e) Elasticsearch

Figure 14. Memory bandwidth utilization improvements ((MeBRhythm −MeBHeracles)/MeBHeracles) under different loads.

can drive the utilization up to 82% when coscheduling stream-
llc and stream-dram with LC Servpods. CPU-stress does not
require much memory bandwidth, so the utilization is quite
low. Generally, Rhythm can improve memory bandwidth uti-
lization by an average of 11.4%, 13.1%, 18.9%, 10.44%, and
10.57% compared with that of Heracles.

Rhythm improves the throughput and resource utilization
not only when LC is coscheduled with the extreme BEs, such
as stream-llc, stream-dram, and CPU-stress, but also when BE
jobs are normal ones (LSTM, ImageClassify and Wordcount).
Specifically, the average improvements on BE throughput
by extreme BEs and normal ones are 17.56% and 21.7%,
respectively. Improvements on CPU utilization are 25.54%
and 29.53%, and improvements on memory bandwidth are
21.03% and 39.13%, respectively.

5.2.2 Overall Performance under Constant Load. We next
show the overall improvements in EMU and resource utiliza-
tion by Rhythm. Figures 12-14 show that Rhythm generates a
much higher EMU and resource utilization than Heracles in
all interference groups. Since both Rhythm and Heracles can
deploy BE jobs at low load, the improvements generally in-
crease over the load, indicating that Rhythm is more effective
when the load towards the LC service is intensive.

In Figure 12, we see that Rhythm generates 11.6%, 18.4%,
24.6%, 14%, and 12.7% more EMU on average than Her-
acles in E-commerce, Redis, Solr, Elgg, and Elasticsearch,
respectively. In particular, when Solr is colocated with Im-
ageClassify and Wordcount, improvements of up to 57%

can be achieved because of the significant improvements
in Zookeeper. Figure 13 shows the CPU utilization improve-
ments for the five LC services. Rhythm can improve the CPU
utilization by 22.2%, 19.1%, 35.3%, 20.6%, and 23% on av-
erage compared with that of Heracles. Colocating LSTM and
CPU-stress with the LC service performs much better utiliza-
tion than others because they both require CPU resources

heavily, and an improvement of up to 112% can be achieved
in the case of Elasticsearch. Figure 14 shows that Rhythm can
improve memory bandwidth utilization by 28.1%, 16.8%,
33.4%, 28.9%, and 19.5% on average compared with that of
Heracles. Colocating stream-dram (or Wordcount) with the
LC service shows much higher improvements than the other
BE jobs since they both consume considerable memory band-
width. The improvement even reaches 120% when colocating
stream-dram with Elasticsearch.

5.3 Production Load
We also evaluate Rhythm using a production request load
from ClarkNet [11] to capture its improvement on resource
utilization. The request load illustrates clear periodicity (see
the top in Figure 17), and the period length is 24 hours. In our
experiment, we scale down five days of the ClarkNet trace to
six hours of workload for shortening the experimental period,
and the traffic load and fluctuating pattern are kept the same.
Then, we collect the resource efficiency in the period.

5.3.1 Overall Performance under Production Load. Fig-
ures 15a-15c show the average performance improvements

11

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

15.4

16.2

27.4

16.1

21.7

23.2

21.2

12.7

20.5

20.7

20.0

18.2

26.2

25.0

18.2

14.0

30.3

23.4

24.5

22.4

18.8

17.3

31.7

25.2

16.8

16.6

12.4

31.2

14.5

21.2

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p

p
lic

a
ti
o

n
s

15.0

20.0

25.0

30.0

(a) EMU (%)

12.1

12.8

22.8

12.7

17.7

19.1

17.3

9.7

16.7

16.8

16.2

14.6

21.8

20.7

14.6

10.9

25.4

19.3

20.3

18.4

15.2

13.9

26.6

20.8

13.4

13.2

9.5

26.2

11.3

17.3

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p

p
lic

a
ti
o

n
s

10.0

15.0

20.0

25.0

(b) CPU Utilization (%)

17.1

17.1

34.0

19.7

22.1

29.5

28.9

15.5

32.1

24.7

27.4

29.0

18.9

20.5

21.7

23.9

16.5

32.7

22.6

13.4

16.3

14.7

27.2

22.6

14.0

SL SD LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p

p
lic

a
ti
o

n
s

15.0

20.0

25.0

30.0

(c) MemBW Utilizaiton (%)

0.74

0.98

0.99

0.87

0.72

0.77

0.81

0.95

0.70

0.71

0.75

0.89

0.92

0.89

0.84

0.86

0.79

0.92

0.76

0.91

0.76

0.81

0.89

0.93

0.72

0.98

0.93

0.85

0.83

0.83

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p

p
lic

a
ti
o

n
s

0.75

0.80

0.85

0.90

0.95

(d) 99th latency/SLA

Figure 15. The average performance improvements by Rhythm on EMU (a), CPU utilization (b), and membw utilizaiton (c)
under production load. (d) represents the 99th percentile latency normalized to the latency stated in SLA. (E-com: E-commerce,
ES: Elasticsearch, SL: Stream-llc, SD: Stream-dram, CS: CPU-stress, LS: LSTM, IC: ImageClassify, WC: Wordcount.)

compared to those of Heracles on EMU, CPU utilization
and memory bandwidth utilization under the production load,
respectively. We see that Rhythm can improve EMU by at
least 12.4% in the Redis-Wordcount group and at most by
31.7% in the Solr-ImageClassify group. For CPU utilization,
Rhythm can achieve an improvement of 26.2% in the Solr-
Wordcount group. For memory bandwidth utilization, Rhythm
can achieve an improvement of 34% in the Solr-Wordcount
group. Generally, while Rhythm can improve the performance
in all interference groups, Solr benefits the most on EMU,
CPU utilization and memory bandwidth utilization among all
of the five LC services.

Figure 15d presents the worst 99th percentile latency nor-
malized to the SLA latency of Rhythm in production request
loads. The actual 99th latency increases with the request load
due to the increasing pressure in server end. Meanwhile, in-
terference from the co-located BE jobs will also cause perfor-
mance degradation of LC service. But we see that Rhythm can
strictly guarantee the SLA in all cases (the worst case is 0.99×
SLA). The result shows the effectiveness of Servpod-level
control in Rhythm, which can improve throughput without
hurting the SLA.

5.3.2 Running with Microservice. Rhythm can be effec-
tive in managing processes, containers or microservices. In
this section, we evaluate its efficiency using the cloud mi-
croservice benchmark: SNMS (social network in microser-
vice), an LC service in DeathStarBench [22]. SNMS contains
30 unique microservices that use RPC for communication.
We divide them into three Servpods: mediaservice includes
13 microservices related with media data processing, frontend
includes 3 microservices (nginx-thrift, media-frontend and
jaeger) and userservice includes 14 microservices related with
user operations. We allocate 20 CPU cores and 64 GB mem-
ory for each Servpod and deploy them distributedly. SNMS
does not need Rhythm’s request tracer, because it has a built-in
jaeger [31], which is a distributed tracing system like Dapper
[65] and can record the sojourn time of each request at each
microservice.

Figure 16 shows the overall performance evaluation results.
Since the contributions of the three Servpods are 0.295, 0.14

stream-llc

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

E
M

U

stream-dram

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
LSTM

20 40 60 80 100
0

0.3

0.6

0.9

1.2
CPU-stress

20 40 60 80 100
0

0.3

0.6

0.9

1.2
imageClassify

20 40 60 80 100
0

0.3

0.6

0.9

1.2
wordcount

20 40 60 80 100
0

0.3

0.6

0.9

1.2

stream-llc

20 40 60 80 100
0

10

20

30

40

50

C
P

U
 U

ti
l.
 (

%
)

stream-dram

20 40 60 80 100
0

10

20

30

40

50
LSTM

20 40 60 80 100
0

15

30

45

60
CPU-stress

20 40 60 80 100
0

20

40

60

80
imageClassify

20 40 60 80 100
0

15

30

45

60
wordcount

20 40 60 80 100
0

10

20

30

40

50

stream-llc

20 40 60 80 100
0

20

40

60

80

100

M
e

B
 U

ti
l.
 (

%
)

stream-dram

20 40 60 80 100
0

20

40

60

80

100
LSTM

20 40 60 80 100

% of max load

0

5

10

15

20

25
CPU-stress

20 40 60 80 100
0

5

10

15

20
imageClassify

20 40 60 80 100
0

20

40

60

80
wordcount

20 40 60 80 100
0

20

40

60

80

Figure 16. Performance comparison when running with mi-
croservice. Improvements are color-coded as follows: - rep-
resents the EMU or resource utilization of LC itself; - repre-
sents the improvements achieved by Heracles; - represents
the further improvements achieved by Rhythm.

and 0.565, respectively, and their slackLimits are 0.189, 0.054
and 0.381, respectively, the improvements mainly benefit
from the mediaservice and frontend Servpods. Compared
with Heracles, Rhythm achieves an average improvement
of 14.3%, 30.2% and 45.8% in the EMU, CPU utilization
and memory bandwidth utilization, respectively. In particular,
Rhythm achieves an EMU improvement of 23.27% in Word-
count group because Wordcount performs many computations
and IO operations, which affects the tail latency significantly.
The CPU-stress group also shows the best improvements in
CPU utilization, but the least in memory bandwidth utilization
for the same reason as in previous experiments.

5.4 Example of Running Process
5.4.1 Timeline. Figure 17 shows the timeline of Rhythm’s
running process on two Servpods (Tomcat and MySQL) when
they are colocated with Wordcount under the production load.
At the beginning, Rhythm allows the growth of the BE work-
load due to the sufficient slack between the actual latency and
SLA target. Thus, BE throughput, BE instances, BE cores,
BE LLC and CPU utilization are all continuing to rise. At
time 3.3, Rhythm calls the SuspendBE() operation because the
request load exceeds the loadlimit. In this case, although all

12

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0
0.25

0.5
0.75

1

L
o

a
d

Load LoadLimit

0
0.25

0.5
0.75

1

S
la

c
k

Slack SlackLimit

0

20

40

60

C
P

U
 (

%
)

MySQL Tomcat

0
5

10
15
20

B
E

 L
L

C

MySQL Tomcat

0
5

10
15
20

B
E

 c
o

re
s MySQL Tomcat

0

5

10

15

B
E

 i
n

s
ta

n
c
e

s

MySQL Tomcat

0 3.3 5.6 7.7 9.3 15 20

Time (min)

0
0.2
0.4
0.6
0.8

1

B
E

 T
h

ro
u

g
h

t

MySQL Tomcat

Figure 17. The timeline of Rhythm’s running process.

BE jobs still keep their allocated resources, the CPU utiliza-
tion drops quickly, and the BE throughput does not increase
anymore. At time 5.6, since the request load declines to <load-
limit, BE jobs return to growth until time 7.7. Then, due to
the sudden drop on the slack, Rhythm launches the CutBE()
operation. While the number of BE instances does not change,
their LLC and core allocations are cut. In the period of 7.7-
9.3, the CPU utilization does not change much because BE
jobs are actually not using those cut cores and LLC resources.
At time 9.3, Rhythm calls the SuspendBE() operation again,
and the whole process is repeated.

70% 80% 90% 100% 110% 120% 130%

Threshold Setting

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 B

E
 T

h
ro

u
g

h
p

u
t

Fixing loadlimit=0.76, varying slacklimit

Fixing slacklimit=0.347, varying loadlimit

Figure 18. Trade-off between loadlimit (slacklimit) and BE
throughput.

5.4.2 Loadlimit and Slacklimit Analysis. We also evalu-
ate the impact of loadlimit and slacklimit on the BE through-
put. By fixing the slacklimit and loadlimit of HAProxy, Tom-
cat, Amoeba, but varying the ones of MySQL, Figure 18
shows how the BE throughput varies over the loadlimit and
slacklimit. We see that the BE througput peaks when the
loadlimit is at the 90% level (i.e., 90% of the actual derived

Table 2. SLA violations and BE kills when varing the load-
limit (slacklimit).

Fixed loadlimit = 0.76 Fixed Slacklimit=0.347
Level Slacklimit SLA Violation BE kills Loadlimit SLA violation BE kills

70% 0.243 22 7 0.532 0 0
80% 0.278 16 5 0.608 0 0
90% 0.312 13 3 0.684 0 0
100% 0.347 0 0 0.760 0 0
110% 0.382 0 0 0.836 12 5
120% 0.416 0 0 0.912 14 8
130% 0.451 0 0 - - -

values.). In case of "fixing loadlimit, varying slacklimit", the
BE throughput at level 80% and 90% are both higher than
the 100% level. However, Table 2 shows that 90% of slack-
limit also causes 13 SLA violations and kills 3 BE jobs in the
period. For loadlimit, the number of SLA violations and BE
kills at 90% level are the same as those at 100%, indicating
that 90% level is a better choice. Hence, while our derivation
of slacklimit and loadlimit works well in experiments, they
can be further improved in the future.

6 Related Work
Request Tracer: Tracking the service path of a request has
been extensively studied in earlier work. They can be classi-
fied into two categories: execution tracing and communication
tracing. Execution tracing [2, 5, 10, 20, 34, 63, 65, 70, 74, 86]
records the low-level system events (e.g., system calls) or log
messages generated during execution, and identifies the re-
quest path through pairing analysis. Communication tracing
[3, 4, 7, 9] discovers the dependency between components
by analyzing the network traffic. While the communication
tracing cannot identify the intraServpod causality easily, we
choose the execution tracing, which is further implemented
through either the intrusive method [5, 20, 34, 65, 70, 86]
or the non-intrusive method [2, 10, 30, 42, 63, 74]. As the
intrusive method causes high instrumentation cost, we simply
use the easy-to-use systemTap [30] for deriving the mean
sojourn time of each request at each Servpod.
Interference analysis: A significant body of work has stud-
ied the interference in cloud computing systems. The studies
show that the performance of cloud services varies signifi-
cantly due to multiple reasons [6, 28, 64], including hardware
heterogeneity [55], virtualization [72], or the contention on
various resources [35, 59, 66]. In particular, contention on
cache [12, 25, 47, 68] and I/O [66] are two main sources
for performance interference. These contentions are not only
from the same core [78, 80] but also possibly from cross-cores
[82, 83]. However, these works mainly focus on the evalu-
ation of the overall performance of an application, e.g., the
latency of a web application [59], a multimedia service [6], or
the execution time of a bigdata analysis job [17]. They never

13

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

study the performance variation of any one of Servpods un-
der interference, while most applications consist of multiple
Servpods.
Profiling-based QoS management: Given the precisely char-
acterized interference features of cloud services, previous
work can guarantee QoS through interference-aware QoS
management. For example, Bubble-Up [49] and Bubble-Flux
[77] predict the impact of interference from potential corun-
ners through the instantaneous pressure generated by a dy-
namic bubble. DeepDive [53] infers performance loss due to
interference by clustering low-level metrics. Dirigent [84] and
Wrangler [76] supports to control QoS based on the predic-
tion of execution time. Stay-away [60] throttles the batch jobs
to avoid contention by predicting any progression towards
a QoS violation at runtime. SMiTe [81] achieves precise in-
terference prediction on real-system architectures. Quasar
[16] and Paragon [15] use classification techniques to quickly
estimate the impact of interference, and improve resource
utilization while guaranteeing QoS. Pythia [75] predicts the
combined contention of multiple applications using a simple
linear regression model to improve utilization.

Other related work like Ubik [37], CQoS [29], CPI2 [79],
iAware [73] and [32] present how to guarantee the QoS with
cache or memory bandwidth isolation mechanisms. For core
isolation, PerfIso [27] colocates batch jobs with production
latency-sensitive services using CPU blind isolation to pro-
tect SLA from burst workloads. Retro [44] present resource
management framework to improve efficiency using these
isolation mechanisms.
Feedback-based QoS management: Although the interference-
aware QoS management works well in many scenarios, it’s
impossible to characterize the interference behaviors of all
applications. Moreover, it is hard to achieve zero error on
interference predictions. Hence, another approach for im-
proving the resource utilization is using the feedback-based
method, that is, response immediately after a possible SLA
violation is detected. ICE [45] works in the application layer,
and it improves the web server performance during interfer-
ence by reconfiguring the balancer and middleware to reduce
the load on the impacted server. In the system layer, Q-Clouds
[51] uses online feedback to capture interference, and tunes
resource allocations to mitigate performance interference ef-
fects. Heracles [41] enables the safe colocation of BE jobs
and LC service through a conservative thresholding method.
PARTIES [8] and CLITE [58] further increases the number of
co-scheduled LC services per server to improve the through-
put. CoPart [57] analyzes the characteristics of workloads
and allocates the LLC and memory bandwidth for BE jobs to
improve fairness. Twig [52] employs a deep reinforcement
learning model for improving the energy-efficiency of colo-
cated latency-critical services. The feedback-based method
may cause oscillations in the control loop especially when
the tail latency is unstable. While the use of loadlimit can

reduce such oscillations, we can also mitigate this problem
by introducing buffer resources, like in PerfIso [27].

GrandSLAm [36] is another work considering the different
characteristics of each service component. It enables consol-
idated execution of requests belonging to multiple jobs in a
microservice-based computing framework. There are four dif-
ferences between Rhythm and GrandSLAm [36]: (1) Grand-
SLAm co-locates multiple LCs, while Rhythm co-locates a
LC and multiple BEs. (2) GrandSLAm is effective when mul-
tiple LCs share microservices, while Rhythm is also effective
when LC has no shared microservices with BEs. (3) The ex-
ecution time of each microservice is highly predictable in
GrandSLAm given the batch size at each microservice, while
it is difficult to predict the execution time in each servpod
due to the uncertain interference. (4) GrandSLAm uses the
end-to-end latency in SLA, while Rhythm considers the tail
latency, which is a statistical result over all latencies. Hence,
GrandSLAm is orthogonal to Rhythm.

7 Conclusions
In this paper, we present Rhythm, a system that manages re-
source allocation between LC service and BE jobs in the
profiling-feedback hybrid way. Rhythm allows the aggressive
deployment of BE jobs on machines contributing less to tail
latency based on Servpod-level control. We evaluate Rhythm
with typical LC services and BE jobs under different load
scenarios, and find it can improve the resource efficiency sig-
nificantly. Rhythm can be deployed easily in a private cloud,
where we can conduct deep analysis on LC services. The
characterization cost is low, as (1) it only relies on the LC
service itself, (2) the request tracing and performance moni-
toring have always been an important component in the cloud,
even without deploying Rhythm.

In the future, we would like to further improve the resource
efficiency through co-locating multi-tenant LCs and BEs. For
the public cloud where we know little about the LC service,
we will explore the design space of co-locations using the
evolved software and hardware isolation mechanisms

Acknowledgment
We thank our shepherd Christos Kozyrakis and anonymous
Eurosys reviewers for their insightful feedback. This work
is supported by the National Key Research and Develop-
ment Program of China No. 2016YFB1000205; the National
Natural Science Foundation of China under grant 61872265,
61702480, 61672499; the new Generation of Artificial Intelli-
gence Science and Technology Major Project of Tianjin under
grant 18ZXZNGX00190, 19ZXZNGX00010; and YIPA of
CAS (2013073).

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

14

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasude-
van, Pete Warden, Martion Wicke, Yuan Yu, and Zheng Xiaoqiang.
2016. Tensorflow: a system for large-scale machine learning.. In OSDI,
Vol. 16. 265–283.

[2] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham. 2007.
E2EProf: Automated End-to-End Performance Management for En-
terprise Systems. In The 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN’07). 749–758.
https://doi.org/10.1109/DSN.2007.38

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick
Reynolds, and Athicha Muthitacharoen. 2003. Performance Debugging
for Distributed Systems of Black Boxes. In Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles (SOSP ’03).
Association for Computing Machinery, New York, NY, USA, 74–89.

[4] Paul Barham, Richard Black, Moises Goldszmidt, Rebecca Isaacs, John
MacCormick, Richard Mortier, and Aleksandr Simma. 2008. Con-
stellation: automated discovery of service and host dependencies in
networked systems. Technical Report MSR-TR-2008-67. 1–14 pages.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
2004. Using Magpie for request extraction and workload modelling. In
Proceedings of the Sixth USENIX Symposium on Operating Systems
Design and Implementation (OSDI) 2004 (proceedings of the sixth
usenix symposium on operating systems design and implementation
(osdi) 2004 ed.). 259–272.

[6] Sean Kenneth Barker and Prashant Shenoy. 2010. Empirical Evaluation
of Latency-sensitive Application Performance in the Cloud. In Pro-
ceedings of the First Annual ACM SIGMM Conference on Multimedia
Systems (MMSys ’10). ACM, New York, NY, USA, 35–46.

[7] P. Chen, Y. Qi, and D. Hou. 2019. CauseInfer: Automated End-to-End
Performance Diagnosis with Hierarchical Causality Graph in Cloud
Environment. IEEE Transactions on Services Computing 12, 2 (March
2019), 214–230. https://doi.org/10.1109/TSC.2016.2607739

[8] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PAR-
TIES: QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). ACM, New York, NY, USA, 107–120.

[9] Xu Chen, Ming Zhang, Z. Morley Mao, and Paramvir Bahl. 2008. Au-
tomating Network Application Dependency Discovery: Experiences,
Limitations, and New Solutions. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’08).
USENIX Association, USA, 117–130.

[10] MIchael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.
Wenisch. 2014. The Mystery Machine: End-to-end Performance Anal-
ysis of Large-scale Internet Services. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). USENIX
Association, Broomfield, CO, 217–231. https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/chow

[11] The Internet Traffic Archive ClarkNet. 2017.
http://ita.ee.lbl.gov/html/traces.html.

[12] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A Pat-
terson, and Krste Asanovic. 2013. A hardware evaluation of cache
partitioning to improve utilization and energy-efficiency while preserv-
ing responsiveness. In ACM SIGARCH Computer Architecture News,
Vol. 41. ACM, 308–319.

[13] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013), 74–80.

[14] Christina Delimitrou and Christos Kozyrakis. 2013. ibench: Quantify-
ing interference for datacenter applications. In 2013 IEEE international
symposium on workload characterization (IISWC). IEEE, 23–33.

[15] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
aware scheduling for heterogeneous datacenters. In ACM SIGPLAN
Notices, Vol. 48. ACM, 77–88.

[16] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-
efficient and QoS-aware cluster management. ACM SIGPLAN Notices
49, 4 (2014), 127–144.

[17] Christina Delimitrou and Christos Kozyrakis. 2016. HCloud: Resource-
Efficient Provisioning in Shared Cloud Systems. SIGPLAN Not. 51, 4
(March 2016), 473–488.

[18] Elasticsearch. 2019. Elasticsearch: a search engine based on the Lucene
library. https://lucene.apache.org/solr/.

[19] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware. SIGPLAN Not. 47, 4 (March 2012), 37–48.

[20] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott
Shenker. 2007. X-Trace: A Pervasive Network Tracing Frame-
work. In 4th USENIX Symposium on Networked Systems Design
& Implementation (NSDI 07). USENIX Association, Cambridge,
MA. https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-
network-tracing-framework

[21] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications
of Cloud Microservices. IEEE Computer Architecture Letters 17, 2
(July 2018), 155–158.

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’19). ACM, New York, NY, USA, 3–18.

[23] Wanling Gao, Lei Wang, Jianfeng Zhan, Chunjie Luo, Daoyi Zheng,
Zhen Jia, Biwei Xie, Chen Zheng, Qiang Yang, and Haibin Wang. 2017.
A Dwarf-based Scalable Big Data Benchmarking Methodology. CoRR
abs/1711.03229 (2017).

[24] Alexander N. Gorban, Lyudmila I. Pokidysheva, Elena V. Smirnova,
and Tatiana A. Tyukina. 2011. Law of the Minimum Paradoxes. Bulletin
of Mathematical Biology 73 (2011), 2013–2044.

[25] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam.
2011. Cuanta: Quantifying Effects of Shared On-chip Resource Inter-
ference for Consolidated Virtual Machines. In Proceedings of the 2Nd
ACM Symposium on Cloud Computing (SOCC ’11). ACM, New York,
NY, USA, 22:1–22:14.

[26] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang
Mao, and Yungang Bao. 2019. Who Limits the Resource Efficiency
of My Datacenter: An Analysis of Alibaba Datacenter Traces. In Pro-
ceedings of the International Symposium on Quality of Service (IWQoS

’19). ACM, New York, NY, USA, Article 39, 10 pages.
[27] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj

Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex
Chen, Jack Zhang, and Junhua Wang. 2018. PerfIso: Performance
Isolation for Commercial Latency-Sensitive Services. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 519–532.

[28] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. 2011. On the
Performance Variability of Production Cloud Services. In 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting. 104–113.

[29] Ravi R. Iyer. 2004. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In International Conference on Supercom-
puting. 257–266.

[30] Bart Jacob, Paul Larson, B Leitao, and SAMM Da Silva. 2008. Sys-
temTap: instrumenting the Linux kernel for analyzing performance and

15

https://doi.org/10.1109/DSN.2007.38
https://doi.org/10.1109/TSC.2016.2607739
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

functional problems. IBM Redbook (2008).
[31] jaeger. 2019. https://www.jaegertracing.io/.
[32] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. 2012. A QoS-aware

memory controller for dynamically balancing GPU and CPU bandwidth
use in an MPSoC. In DAC Design Automation Conference 2012. 850–
855.

[33] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Program-
ming Simplified: A Berkeley View on Serverless Computing. CoRR
abs/1902.03383 (2019).

[34] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and
Yee Jiun Song. 2017. Canopy: An End-to-End Performance Tracing
And Analysis System. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles, Shanghai, China, October 28-31, 2017. ACM,
34–50.

[35] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. 2012. Measuring
interference between live datacenter applications. In High PERFOR-
MANCE Computing, Networking, Storage and Analysis. 1–12.

[36] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. 2019. GrandSLAm: Guaranteeing
SLAs for Jobs in Microservices Execution Frameworks. In Proceedings
of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). Association
for Computing Machinery, New York, NY, USA, Article Article 34,
16 pages.

[37] Harshad Kasture and Daniel Sanchez. 2014. Ubik: efficient cache
sharing with strict qos for latency-critical workloads. In ACM SIGPLAN
Notices, Vol. 49. ACM, 729–742.

[38] Darja Krushevskaja and Mark Sandler. 2013. Understanding latency
variations of black box services. In Proceedings of the 22nd interna-
tional conference on World Wide Web. ACM, 703–714.

[39] Kubernetes. 2019. https://kubernetes.io/.
[40] Qixiao Liu and Zhibin Yu. 2018. The Elasticity and Plasticity in Semi-

Containerized Co-locating Cloud Workload: A View from Alibaba
Trace. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’18). ACM, New York, NY, USA, 347–360.

[41] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving resource
efficiency at scale. In ACM SIGARCH Computer Architecture News,
Vol. 43. ACM, 450–462.

[42] LTTng. 2019. https://lttng.org/.
[43] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen

Huang, Tianni Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin
Zhang, and Yungang Bao. 2015. Supporting Differentiated Services in
Computers via Programmable Architecture for Resourcing-on-Demand
(PARD). SIGARCH Comput. Archit. News 43, 1 (March 2015), 131–
143.

[44] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musu-
vathi. 2015. Retro: Targeted Resource Management in Multi-tenant
Distributed Systems. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15). USENIX Association,
Oakland, CA, 589–603.

[45] A. K. Maji, S. Mitra, and S. Bagchi. 2015. ICE: An Integrated Configu-
ration Engine for Interference Mitigation in Cloud Services. In 2015
IEEE International Conference on Autonomic Computing. 91–100.

[46] Haroon Malik, Hadi Hemmati, and Ahmed E Hassan. 2013. Auto-
matic detection of performance deviations in the load testing of large
scale systems. In Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 1012–1021.

[47] Raman Manikantan, Kaushik Rajan, and Ramaswamy Govindarajan.
2012. Probabilistic shared cache management (PriSM). In Computer

Architecture (ISCA), 2012 39th Annual International Symposium on.
IEEE, 428–439.

[48] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. 2011. Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations. In Proceedings of the 44th an-
nual IEEE/ACM International Symposium on Microarchitecture. ACM,
248–259.

[49] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. 2011. Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-44). ACM, New York, NY, USA, 248–259.

[50] D. A. Menasce. 2002. TPC-W: A Benchmark for E-Commerce. IEEE
Internet Computing 6 (05 2002), 83–87.

[51] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds:
managing performance interference effects for qos-aware clouds. In
Proceedings of the 5th European conference on Computer systems.
ACM, 237–250.

[52] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Sjalander.
2020. Twig : Multi-Agent Task Management for Colocated Latency-
Critical Cloud Services. In 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 167–179.

[53] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic,
and Ricardo Bianchini. 2013. DeepDive: Transparently Identifying
and Managing Performance Interference in Virtualized Environments.
In Proceedings of the 2013 USENIX Conference on Annual Technical
Conference (USENIX ATC’13). USENIX Association, Berkeley, CA,
USA, 219–230.

[54] Numactl. 2019. https://github.com/numactl/numactl.
[55] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and

Pan Hui. 2012. Exploiting Hardware Heterogeneity Within the Same
Instance Type of Amazon EC2. In Proceedings of the 4th USENIX Con-
ference on Hot Topics in Cloud Ccomputing (HotCloud’12). USENIX
Association, Berkeley, CA, USA, 4–4.

[56] Ioannis Papadakis, Konstantinos Nikas, Vasileios Karakostas, Georgios
Goumas, and Nectarios Koziris. 2017. Improving QoS and Utilisation
in modern multi-core servers with Dynamic Cache Partitioning. In
Proceedings of the Joined Workshops COSH 2017 and VisorHPC 2017,
Carsten Clauss, Stefan Lankes, Carsten Trinitis, and Josef Weidendorfer
(Eds.). Stockholm, Sweden, 21–26.

[57] Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Co-
ordinated Partitioning of Last-Level Cache and Memory Bandwidth
for Fairness-Aware Workload Consolidation on Commodity Servers. In
Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19).
ACM, New York, NY, USA, Article 10, 16 pages.

[58] Tirthak Patel and Devesh Tiwari. 2020. CLITE : Efficient and QoS-
Aware Co-location of Multiple Latency-Critical Jobs for Warehouse
Scale Computers. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 193–206.

[59] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh,
and Calton Pu. 2010. Understanding Performance Interference of I/O
Workload in Virtualized Cloud Environments. In Proceedings of the
2010 IEEE 3rd International Conference on Cloud Computing (CLOUD
’10). IEEE Computer Society, Washington, DC, USA, 51–58.

[60] Navaneeth Rameshan, Leandro Navarro, Enric Monte, and Vladimir
Vlassov. 2014. Stay-Away, Protecting Sensitive Applications from
Performance Interference. In Proceedings of the 15th International
Middleware Conference (Middleware ’14). ACM, New York, NY, USA,
301–312.

[61] Redis. 2019. Redis: an open source, in-memory data structure store.
https://redis.io.

[62] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz,
and Michael A. Kozuch. 2012. Heterogeneity and Dynamicity of
Clouds at Scale: Google Trace Analysis. In Proceedings of the Third

16

Rhythm: Component-distinguishable Workload Deployment in Datacenters EuroSys ’20, April 27–30, 2020, Heraklion, Greece

ACM Symposium on Cloud Computing (SoCC ’12). ACM, New York,
NY, USA, 7:1–7:13.

[63] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang, and Z. Jia.
2012. Precise, Scalable, and Online Request Tracing for Multitier Ser-
vices of Black Boxes. IEEE Transactions on Parallel and Distributed
Systems 23, 6 (June 2012), 1159–1167.

[64] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Run-
time Measurements in the Cloud: Observing, Analyzing, and Reducing
Variance. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 460–471.

[65] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report. Google, Inc.

[66] S. Sivathanu, X. Pu, L. Liu, X. Dong, and Y. Mei. 2013. Performance
Analysis of Network I/O Workloads in Virtualized Data Centers. IEEE
Transactions on Services Computing 6 (01 2013), 48–63.

[67] Solr. 2019. Solr is the popular, blazing-fast, open source enterprise
search platform built on Apache Lucene. https://www.elastic.co.

[68] Shekhar Srikantaiah, Mahmut Kandemir, and Qian Wang. 2009.
SHARP control: controlled shared cache management in chip multipro-
cessors. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 517–528.

[69] Christopher Stewart and Kai Shen. 2005. Performance modeling and
system management for multi-component online services. In Proceed-
ings of the 2nd Conference on Symposium on Networked Systems De-
sign & Implementation-Volume 2. USENIX Association, 71–84.

[70] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael
Abd-El-Malek, Julio Lopez, and Gregory R. Ganger. 2006. Stardust:
Tracking Activity in a Distributed Storage System. SIGMETRICS
Perform. Eval. Rev. 34, 1 (June 2006), 3–14. https://doi.org/10.1145/
1140103.1140280

[71] A Tirumala, F Qin, J Dugan, J Ferguson, and K Gibbs. 2005. Iperf: The
TCP/UDP bandwidth measurement tool. http.dast.nlanr.net/Projects
38 (2005).

[72] Guohui Wang and T. S. Eugene Ng. 2010. The Impact of Virtual-
ization on Network Performance of Amazon EC2 Data Center. In
Proceedings of the 29th Conference on Information Communications
(INFOCOM’10). IEEE Press, Piscataway, NJ, USA, 1163–1171.

[73] Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li.
2014. iAware: Making Live Migration of Virtual Machines Interference-
Aware in the Cloud. IEEE Trans. Comput. 63, 12 (Dec. 2014), 3012–
3025.

[74] H. Xu, X. Ning, H. Zhang, J. Rhee, and G. Jiang. 2016. PInfer: Learning
to Infer Concurrent Request Paths from System Kernel Events. In 2016
IEEE International Conference on Autonomic Computing (ICAC). 199–
208. https://doi.org/10.1109/ICAC.2016.38

[75] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg
Bronevetsky, and Saurabh Bagchi. 2018. Pythia: Improving Datacenter
Utilization via Precise Contention Prediction for Multiple Co-located
Workloads. In Proceedings of the 19th International Middleware Con-
ference (Middleware ’18). ACM, New York, NY, USA, 146–160.

[76] Neeraja J Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz.
2014. Wrangler: Predictable and faster jobs using fewer resources.
In Proceedings of the ACM Symposium on Cloud Computing. ACM,
1–14.

[77] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013.
Bubble-flux: Precise Online QoS Management for Increased Utilization
in Warehouse Scale Computers. ACM SIGARCH Computer Architec-
ture News 41, 3 (2013), 607–618.

[78] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2016. Elfen
Scheduling: Fine-Grain Principled Borrowing from Latency-Critical
Workloads Using Simultaneous Multithreading. In 2016 USENIX An-
nual Technical Conference (USENIX ATC 16). USENIX Association,
Denver, CO, 309–322.

[79] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. 2013. CPI 2: CPU performance isolation for shared
compute clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems. 379–391.

[80] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. 2014. SMiTe:
Precise QoS Prediction on Real-System SMT Processors to Improve
Utilization in Warehouse Scale Computers. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. 406–418.

[81] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang.
2014. Smite: Precise qos prediction on real-system smt processors to
improve utilization in warehouse scale computers. In Microarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International Symposium on.
IEEE, 406–418.

[82] Jiacheng Zhao, Huimin Cui, Jingling Xue, and Xiaobing Feng. 2016.
Predicting Cross-Core Performance Interference on Multicore Proces-
sors with Regression Analysis. IEEE Trans. Parallel Distrib. Syst. 27,
5 (May 2016), 1443–1456.

[83] Jiacheng Zhao, Huimin Cui, Jingling Xue, Xiaobing Feng, Youliang
Yan, and Wensen Yang. 2013. An Empirical Model for Predicting Cross-
core Performance Interference on Multicore Processors. In Proceedings
of the 22Nd International Conference on Parallel Architectures and
Compilation Techniques (PACT ’13). IEEE Press, Piscataway, NJ, USA,
201–212.

[84] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for
latency-critical tasks on shared multicore systems. ACM SIGARCH
Computer Architecture News 44, 2 (2016), 33–47.

[85] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017.
Unpaired Image-to-Image Translation using Cycle-Consistent Adver-
sarial Networks. In Proceedings of the IEEE international conference
on computer vision. 2223–2232.

[86] Zipkin. 2019. https://zipkin.io/.

17

https://doi.org/10.1145/1140103.1140280
https://doi.org/10.1145/1140103.1140280
https://doi.org/10.1109/ICAC.2016.38

	Abstract
	1 Introduction
	2 Inconsistent Interference Tolerance Ability
	3 Rhythm Design
	3.1 The Servpod Abstraction
	3.2 System Overview
	3.3 Request Tracer
	3.4 Contribution Analyzer
	3.5 Controller

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Constant Load
	5.3 Production Load
	5.4 Example of Running Process

	6 Related Work
	7 Conclusions
	References

