
111

Component-distinguishable Co-location and Resource
Reclamation for High-throughput Computing

LAIPING ZHAO, YUSHUAI CUI, YANAN YANG∗, XIAOBO ZHOU, TIE QIU, and KEQIU
LI†, College of Intelligence and Computing, Tianjin University, Tianjin Key Lab. of Advanced Networking,
China
YUNGANG BAO, Inst. of Computing Technology, CAS, China

Cloud service providers improve resource utilization by co-locating latency-critical (LC) workloads with
best-effort batch (BE) jobs in datacenters. However, they usually treat multi-component LCs as monolithic
applications and treat BEs as "second-class citizens" when allocating resources to them. Neglecting the
inconsistent interference tolerance abilities of LC components and the inconsistent preemption loss of BE
workloads can result in missed co-location opportunities for higher throughput.

We present Rhythm, a co-location controller that deploys workloads and reclaims resources rhythmically
for maximizing the system throughput while guaranteeing LC service’s tail latency requirement. The key
idea is to differentiate the BE throughput launched with each LC component, that is, components with higher
interference tolerance can be deployed together with more BE jobs. It also assigns different reclamation priority
values to BEs by evaluating their preemption losses into a multi-level reclamation queue. We implement and
evaluate Rhythm using workloads in the form of containerized processes and microservices. Experimental
results show that it can improve the system throughput by 47.3%, CPU utilization by 38.6%, and memory
bandwidth utilization by 45.4% while guaranteeing the tail latency requirement.

CCS Concepts: • Computer systems organization→ Cloud computing.

Additional Key Words and Phrases: Datacenters, Resource Utilization, Tail latency, Co-locating.

ACM Reference Format:
Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao. 2023. Component-
distinguishable Co-location and Resource Reclamation for High-throughput Computing. ACM Trans. Comput.
Syst. 37, 4, Article 111 (August 2023), 37 pages. https://doi.org/10.1145/3630006

∗Corresponding author: ynyang@tju.edu.cn
†Corresponding author: keqiu@tju.edu.cn

This work extends a previous article published in the Eurosys 2020: Rhythm: Component-distinguishableWorkload Deployment
in Datacenters. This article adds the resource reclamation control for BE workloads, including (1) an observation of
inconsistent BE preemption loss; (2) a new BE-distinguishable reclamation mechanism; (3) experimental evaluation of the
BE-distinguishable reclamation mechanism.
Authors’ addresses: Laiping Zhao, laiping@tju.edu.cn; Yushuai Cui, cuiys@tju.edu.cn; Yanan Yang, ynyang@tju.edu.cn;
Xiaobo Zhou, xiaobo.zhou@tju.edu.cn; Tie Qiu, qiutie@tju.edu.cn; Keqiu Li, keqiu@tju.edu.cn, College of Intelligence and
Computing, Tianjin University, Tianjin Key Lab. of Advanced Networking, Tianjin, China; Yungang Bao, baoyg@ict.ac.cn,
Inst. of Computing Technology, CAS, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0734-2071/2023/8-ART111 $15.00
https://doi.org/10.1145/3630006

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.1145/3630006
https://doi.org/10.1145/3630006

111:2 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

1 INTRODUCTION
The multi-tenant sharing nature of cloud computing exacerbates contention for shared resources,
including the CPU cores, memory, cache, memory bandwidth, and networks. This resource con-
tention leads to disordered execution of cloud services, wherein the resource consumption becomes
challenging to manage, resulting in long tail latency [21]. For example, in Google’s latency-critical
(LC) service, the fluctuation range of tail latency can be as wide as 0 and 500ms, with the highest
variation difference exceeding 600× [47].

To mitigate the disorder caused by the contention, prior work seeks to isolate tenants through
two approaches: hardware methods and software methods. Hardware methods, such as the Intel RDT
[68] and PARD [54], provide open control interfaces that allow differentiation of services at the
hardware level for resourcing-on-demand. Although they are effective in achieving performance
isolation, their adoption requires new hardware support. The software methods commonly rely on
resource overprovisioning (i.e., provisioning more capacity than they actually need) to reduce the
interference. However, this approach leads to low resource utilization, resulting in increased costs
for cloud services. For example, traces from Aliyun [50] show that they merely achieve aggregate
CPU utilization of < 40% and aggregate memory utilization of < 60%. The average CPU utilization
of Google’s cluster is higher, but still < 60% [87].

..

Component-distinguishable deployment
(high throughput, low cost)

Increased
throughput

..

profiling

Profiling-based

Plan ahead
(high throughput, high cost)

machines

BE
..

LC
..

..

BE

LC
..

Conservative deployment
(low throughput, low cost)

..

.. lost
 throughput

BE
..

LC
..

Feedback-based

BE
..

LC
..
Hybrid

1
3 M
2profiling

LC.1 2 3

M

Co-schedule
LCs and BEs

complementarily

W/o profile,
control BE
uniformly

Control LC/BE
at machines
differently

Fig. 1. Schematic overview of the workload deployment method.

It is possible to improve resource utilization by co-locating as many workloads as possible. How-
ever, it needs more control from the management system to avoid violating the tail latency Service
Level Objective (SLO) of the LC service. We have identified the two prevalent control approaches
shown in Figure 1. Profiling-based control strategy consolidates non-competitive applications based
on their resource usage profiles [20, 24, 25, 59, 84, 92, 94, 100]. This strategy analyzes the resource
needs of different applications and groups them together based on their compatibility, thus optimiz-
ing resource allocation. Feedback-based control strategy deploys workloads directly onto machines
while continuously monitoring SLO violations. If violations occur, this strategy employs actions
such as system reconfiguration [56] or resource reallocation [16, 51, 63] to address the issues and
maintain SLO compliance. However, the profiling-based strategy, while generating high throughput,
incurs significant profiling overhead. This makes it challenging to deploy this strategy widely in
large-scale cloud systems, especially considering the continuous emergence of new applications and
potential consolidations in the cloud. Feedback-based strategy does not involve profiling overhead.
However, the existing feedback-based approaches [16, 51, 56, 63] manage workload co-locations at
the granularity of the entire LC service, disregarding the variations among different parts of the
service when it is distributively deployed. This coarse-grained design results in low throughput.
Furthermore, best-effort (BE) jobs are often treated as “second-class citizens” in this approach, with

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:3

limited resource allocation and the possibility of being reclaimed and rescheduled arbitrarily to
avoid SLO violations [35]. This conservative strategy further leads to wasted computation.
We suggest launching BE jobs more aggressively in a feedback way while capturing a little

more profile information about the LC service (i.e., the hybrid strategy in Figure 1). Leveraging an
aggressive policy would highly risk SLO violations; Therefore, it is crucial to carefully determine
where and how to launch these jobs.With virtualization techniques evolving fromVMs to containers,
the controllable objects on cloud providers’ side are becoming more varied and lightweight, offering
greater flexibility in control methods. This shift allows for control at a finer level of granularity. In
line with this, we propose a fine-grained controller built around the hybrid strategy. It differentiates
the BE throughput launched with each LC Servpod, which is a new abstraction representing a
collection of LC service parts deployed on the same physical machine. A Servpod acts as a unit for
service deployment, defining the mappings between the LC structure and physical machines. By
employing this fine-grained controller, we can optimize the allocation and management of resources
within the cloud environment, taking into account the specific characteristics and requirements of
different Servpods.
To guide the launch of BE jobs, we conduct an analysis of the tail-latency contribution of each

Servpod. This allows us to measure the weights of each Servpod in terms of overall tail latency.
There are several challenges associated with this approach:
(1) How can we track a request and extract its sojourn time at each Servpod to achieve
Servpods differentiation? As it is difficult to track a request in the public cloud due to the black-
box design of VMs, we only consider private clouds where the sojourn time at each Servpod can be
measured. An LC workload often includes multiple Servpods, and user requests may follow different
paths within the service call. While program instrumentation can provide precise measurements of
the sojourn time for each request in each Servpod, it typically requires a significant development
cost. Therefore, we opt for a non-intrusive method, which involves deriving latencies in each
Servpod from the large number of system events generated by processes.
(2) How can we transform the sojourn times in each Servpod into BE launch decisions?
When analyzing the call path of an LC request, each Servpod plays a distinct role in the overall
end-to-end tail latency. To guide the deployment of BE jobs, we define the contribution of each
Servpod by considering its sojourn time mean, variance, and correlation coefficient. Servpod with a
small contribution to the tail latency can be deployed along with more BE jobs.
As "second-class citizens", BE workloads may be suspended or even reclaimed whenever SLO

violations occur. To prevent unnecessary computation resulting from arbitrary reclamation, we
propose selectively controlling BEs based on their runtime behavior. Specifically, we prioritize the
reclamation of BEs with lower preemption loss. There are also two challenges to this problem:
(1) How to differentiate the reclamation-priorities of BEs? Useless computation increases
over the job progress and fault tolerant costs. It is generally not desirable to reclaim a job that
is nearly completed, as it would result in wasted computation. However, certain types of jobs,
such as distributed deep learning training, can tolerate a few worker failures without significant
throughput loss. Therefore, we leverage the varying job progress and fault-tolerant abilities of BEs
to determine their reclamation priorities.
(2) How can we implement the controller by making use of both the LC Servpod contri-
butions and BE reclamation priorities? By monitoring the QPS (Query per Second) and the
slack between the current tail latency and SLO target, the controller continuously makes decisions
regarding resource allocation and release for the BEs based on the contribution analysis of Servpods.
Under SLO violations, BEs are reclaimed according to their reclamation priorities.
To address these challenges, we present Rhythm, a cloud controller that maximizes the system

throughput while guaranteeing LC service’s tail latency SLO. Rhythm supports tracking the requests

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:4 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

in all Servpods, and derives the contribution of each Servpod to the end-to-end tail latency. It
implements a runtime agent at each Servpod, enabling the aggressive launch of BE jobs at Servpods
with less contributions. For BE workloads, it monitors the job progress of BEs and evaluates their
preemption losses into a MLRQ (Multi-Level Reclamation Queue) for discriminative BE reclamation.
Rhythm carefully isolates interference between LC and BE jobs utilizing the hardware features,
including cache isolation and DVFS (Dynamic Voltage and Frequency Scaling) and software isolation
mechanisms (including core isolation, DRAM isolation and network traffic isolation). In summary,
the contributions of this paper include:

• The insight of varying interference-tolerance abilities among different components of an LC
service. (§ 2)

• Introducing a new abstraction called Servpod and analyzing the tail-latency contributions of
Servpods enables the co-location of distinguishable workloads in a cloud system. (§ 3)

• A new reclamation mechanism, referred to BE-distinguishable reclamation, has been intro-
duced to address the resource reclamation of BE jobs when there is a significant risk of SLO
violations. (§ 3)

• A prototype system, Rhythm, designed following the hybrid strategy: “profiling LC once,
feedback control BE.” This design approach can be adopted in private clouds and offers high
extensibility and flexibility. (§ 3 and § 4)

• A detailed comparative evaluation between Rhythm and non-component-distinguishable
systems has been conducted, highlighting the performance improvements achieved by Rhythm
in terms of system throughput while avoiding SLO violations. (§ 5)

2 BACKGROUND ANDMOTIVATION
In this section, we first study the interference sensitivity of LC components. Then, we evaluate the
preemption loss experienced by BEs when SLO violations occur due to interference.

2.1 Inconsistent Interference Tolerance Ability
We study the interference sensitivity of LC components utilizing two typical LCs: the multi-tier E-
commerce website [62] consists of four components, namely, HAProxy, Tomcat, Amoeba and MySQL,
and the fan-out Redis [74] consists of two components, Master and Slave. In order to generate
sufficient interference, we use five synthetic microbenchmarks as BE jobs, namely, CPU-stress [57],
stream-llc [23], stream-dram [23], DVFS and iperf [88], which can put strong pressure on various
shared resources. For evaluating the interference at different intensities of pressure on DRAM
bandwidth and LLC, we also extend stream_dram (or stream-llc) to two intensity levels: big and
small, where big means saturating the corresponding DRAM bandwidth (or LLC), while small
means occupying only half of the whole capacity.

Each LC service component is deployed together with a BE job on the same machine to measure
the impact on the overall 99𝑡ℎ percentile latency. For measuring the contention on cores, we pin
the component and CPU-stress on the cores from the same socket. For measuring LLC interference,
we pin the component and stream-llc to different cores from the same CPU socket since they
have separate L1/L2 cache but share L3. For measuring interference on DRAM bandwidth, we use
numactl [66] to place the component and stream-dram on the same socket without CPU core usage
overlap. In addition, we use DVFS to adjust the frequency of processors holding the component to
evaluate its impact on tail latency. All experiments share the same settings with those in § 5, and
each run is repeated 5 times for reducing errors.
We evaluate the performance degradations of two LC services under the interference over

increased request load, the characterization results are presented in Figure 2.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:5

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

% of max load

0
2

2
2

4
2

6
2

8
2

10
2

12

9
9
%

 L
a
te

n
c
y
 I
n
c
re

.
(%

)

Master Slave

DVFS CPU_stressstream_dram(big) stream_dram(small) stream_llc(big) stream_llc(small) iperf

(a) Redis: Master vs Slave

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

% of max load

0
2

2
2

4
2

6
2

8
2

10
2

12
2

14

9
9
%

 L
a
te

n
c
y
 I
n
c
re

.
(%

)

Tomcat

Mysql

stream_dram(big) stream_dram(small) stream_llc(big) DVFS iperf CPU_stressstream_llc(small)

(b) E-commerce website: Tomcat vs MySQL
Fig. 2. Impact of interference on the 99𝑡ℎ percentile latency of LC service: the X-axis represents the interference
groups of LC service components and BE jobs under different percent of the maximum request load. The Y-axis
represents the corresponding increase in 99𝑡ℎ percentile latency normalized to the solo-run performance
(presented in logarithmic scale).

Redis: Figure 2a shows the increase in latency when we co-schedule the Master or Slave of Redis
with BE jobs. We see that the performance degradation under interference generally increases over
the request load. Master is more sensitive than Slave inmost interference groups, and their difference
varies with the BE jobs. In particular, since the Master strongly relies on LLC, memory and network
bandwidth for both requests distribution and data operation, it is particularly more sensitive to
interference caused by stream-dram (big), stream-llc (big) and CPU-stress than Slave. The difference
between Master and Slave even exceeds 28× under the same interference from stream-llc (big). For
interference from stream-dram (small), stream-llc (small) and DVFS, the differences of the latency
increase between Master and Slave also reach 155.1%, 181.1% and 122%, respectively. CPU-stress
generates the least interference, which increases the latency by an average of 113.1% at the Master
and 22% at the Slave, resulting in 91.1% difference.
E-commmerce website: Figure 2b shows the increase in latency when we co-schedule the

Tomcat or MySQL of E-commmerce with BE jobs. MySQL is more sensitive to interference generated
by stream-dram (big), stream-llc (big), CPU-stress and iperf. The differences of the latency increase
between Tomcat and MySQL reach 435.8% and 35.1% under the interference from stream-dram
(big) and CPU-stress. In case of stream-llc (big), the difference between Tomcat and MySQL reaches
more than 35×. Tomcat is more sensitive to interference generated by DVFS, and the differences
between Tomcat and MySQL is 416.7%. In groups of stream-dram (small) and stream-llc (small), the
differences are 71% and 13.2%, respectively.
Hence, the impact of interference on different components of LC service exhibits significant

inconsistency. While resource contention affects highly sensitive components and leads to SLO
violations, less sensitive components can accommodate more BE deployment. This highlights the
inefficiency of existing approaches that uniformly control the co-location of LC workload and BE
jobs, as they overlook the varying interference tolerance abilities of individual components (aka
"Law of the Minimum" [33]).

2.2 Inconsistent Preemption Loss of BEs
The inconsistent preemption loss of BEs refers to the variation or disparity in the level of negative
impact experienced by different BEs when they are preempted whenever SLO violations occur. It
means that some BEs may suffer more severe consequences or incur higher costs when resources are
reclaimed from them compared to others. A typical reclamation process can be divided into three

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:6 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

stages: (1) If the computing cluster still has idle resources available, the controller will reschedule
the co-located BEs to utilize these idle resources. This allows the BEs to continue running without
interruption. (2) If there are no idle resources in the cluster, the controller will choose to reduce
the resource allocation of the currently running BEs instead of terminating them. This means
that the resources assigned to the BEs will be reduced, which will result in the BEs running at a
lower speed or with limited capacity. (3) If the SLO is still being violated even after reducing the
resources allocated to the BEs, the controller will take a more aggressive approach. It will preempt
the resources assigned to the co-located BEs, effectively stop their execution, and allocate all those
resources to the LCs. By doing so, the controller prioritizes the performance of the LC service and
ensures that it receives sufficient resources to meet the SLO requirements.

BEs Description configuration
Resnet20-ASP [4] Deep learning model for image classification in asynchronous training mode Two workers (5 CPUs/worker)
Resnet20-BSP [4] Deep learning model for image classification in synchronous training mode Two workers (5 CPUs/worker)
KMeans [82] Bigdata application implemented on Spark Three exectuors (2 CPUs/exectuor)
SciMark [2] A Java benchmark for scientific and numerical computing Single binary file (2 CPUs)

(a) BE workloads Description

10 30 50 70 90

% of progress

-1.5

-1.2

-0.9

-0.6

-0.3

0

S
e

rv
ic

e
 L

o
s
s
 (

×
 1

0
3
)

Resnet20-ASP

10 30 50 70 90

% of progress

-0.6

-0.2

0.2

0.6

1.0

S
e

rv
ic

e
 L

o
s
s
 (

×
 1

0
3
)

Resnet20-BSP

10 30 50 70 90

% of progress

-1

0

1

2

3

4

S
e

rv
ic

e
 L

o
s
s
 (

×
 1

0
2
)

KMeans

10 30 50 70 90

% of progress

0

10

20

30

40

50

S
e

rv
ic

e
 L

o
s
s

SCIMARK

(b) Service Loss (𝑇𝑖𝑚𝑒 ×𝐶𝑃𝑈) of different BEs under resource reclaim

Fig. 3. BE benchmarks and their preemption losses.

For evaluating the preemption losses, we deploy four real BE benchmarks with different fault
tolerance ability on our testbed (§ 5). We evaluate their preemption losses by terminating one of its
tasks at midway ranging in [10%, 90%]. The preemption loss is defined as the lost service as below:

𝐿 = 𝑆𝑝𝑚𝑡𝑛 − 𝑆𝑜𝑔𝑛𝑙 = 𝑡𝑝𝑚𝑡𝑛𝑟𝑝𝑚𝑡𝑛 − 𝑡𝑜𝑔𝑛𝑙𝑟𝑜𝑔𝑛𝑙 (1)

where 𝑡𝑝𝑚𝑡𝑛 (or 𝑡𝑜𝑔𝑛𝑙) represents the makespan of the BE under preemption (or without preemption).
𝑟𝑝𝑚𝑡𝑛 (or 𝑟𝑜𝑔𝑛𝑙) represents the resources (e.g., number of CPU cores) occupied by the BE under
preemption (or without preemption).
Figure 3 illustrates the significant variability in preemption loss among different BEs. In the

case of Resnet20-ASP, preemption actually benefits the workload because terminating a worker
in asynchronous mode does not result in job failure or the need for worker rescheduling. Despite
the reduction in occupied resources, the makespan of Resnet20-ASP remains relatively stable
under preemption. Therefore, task preemption in Resnet20-ASP improves service efficiency in our
configuration. However, for Resnet20-BSP, where workers need to be synchronized and any failed
worker requires restarting from the latest checkpoint, terminating a worker after 30% progress leads
to service loss. It is common for a later preempted task to incur higher loss for a job. For example,
the preemption loss of Scimark grows linearly with progress (Figure 3b). Since we did not provide
any fault tolerance mechanism for Scimark, each preemption triggers resubmission and rerunning
from the beginning. Conversely, in the case of KMeans, we observe that later preemptions result in
less loss. This can be attributed to two factors: (1) The Resilient Distributed Datasets (RDDs) [98]
offer high fault tolerance for Spark applications, enabling the Spark scheduler to quickly recover
from task failures regardless of when they occur. (2) Applications often execute in phases [78]. We

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:7

find that preemption at 70% progress generates minimal contention among Spark executors. Thus,
reclaiming resources at this stage has little effect on the overall makespan.

0.4

0.8

1.2

1.6
E

M
U

Heracles Resource-deflation Rhythm

0

20

40

60

80

C
P

U
 U

ti
ls

Heracles Resource-deflation Rhythm

0 261 363 486 657 855 1200

Timeline (s)

-0.1
0

0.1
0.2
0.3
0.4
0.5

S
la

c
k

Heracles Resource-deflation Rhythm

Fig. 4. A scheduling scheme that does not distinguish between BE loads is inefficient.

According to the varying preemption losses of BEs, it is feasible to design a BE-distinguishable
reclamation mechanism to further enhance system throughput. We deploy Redis as the LC on
our testbed (§ 5) and co-locate it with 20 different BE workloads, comprising 5 bigdata analysis
jobs, 5 distributed deep learning training jobs (following the parameter-server architecture), and
10 scientific computing jobs. We compare our Rhythm with two BE-indistinguishable reclamation
mechanisms: Resource deflation [77] which aims to delay the preemption as much as possible using
a cascading reclamation technique across multiple levels (applications, operating systems, and
hypervisors); and Heracles [51] which rapidly restores LC’s latency by directly disabling co-located
BEs when the latency approaches the SLO target.

Figure 4 illustrates the changes in EMU, CPU utilization, and the 99𝑡ℎ percentile latency of Redis
over time. EMU represents the effective machine utilization, which is the sum of LC throughput and
BE throughput (§ 5). During the time intervals [261, 486] and [657, 855], the request load towards
Redis increases from 65% to 85% of the maximum QPS for creating significant interference. For
example, at time 261, Redis experiences a sudden increase in access load, requiring more resources
to maintain the desired tail latency. In this scenario, Heracles chooses to preempt all running BEs,
prioritizing fast SLO recovery at the expense of resource utilization. On the other hand, Resource
Deflation adopts a gradual but slow reclamation process, maintaining high CPU utilization but
failing to ensure the SLO during this period. In contrast, our Rhythm distinguishes between BE
workloads based on their preemption costs and selectively preempts the ones with lower costs.
This approach achieves a high EMU and CPU utilization while achieving a quicker recovery of tail
latency.

2.3 Implications
In summary, by leveraging the inconsistent interference tolerance abilities of LC components,
we can control the co-locations at LC components differently and aggressively. Specifically, co-
locating more BE workloads with the low-sensitive components of an LC is less likely to result
in SLO violations. However, quantifying the interference tolerance abilities of LC components
can introduce overhead to the controller. To mitigate this overhead, we propose quantifying the

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:8 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

tail latency contribution of each LC component, which only requires a single solo-run profiling
process.

Similarly, by leveraging the inconsistent preemption loss characteristics of BEs, we can control
the reclamation process of BEs differently when SLO violations occur. Specifically, BEs with
lower preemption loss are given higher priority for reclamation. To reduce the evaluation cost of
preemption losses for BEs, we only consider their runtime available information. This approach
helps optimize the resource reclamation process while minimizing the computational overhead.

3 RHYTHM DESIGN
In this section, we present the design of Rhythm and show where and how to launch or reclaim
BEs making use of the features of LC Servpods and BE workloads.

3.1 The Servpod Abstraction
We introduce Servpod, which refers to a collection of service components from a single LC workload
that are deployed together on the same physical machine. In the context of a directed acyclic
graph (DAG) representation of an LC service, where vertices represent LC components and edges
indicate the precedence relation among them, a Servpod can comprise multiple LC components
that are scheduled on the same physical machine. Consequently, Servpod provides insights into the
mappings between physical machines and the service structure of the LC workload. The number of
Servpods corresponds to the number of deployed physical machines.

A Servpod could be one or multiple processes, containers or microservices [31]. We do not discuss
the scheduling problem of LC components here, but assume that an LC has already been scheduled
on physical machines, generating multiple Servpods. Given the distributed Servpods, we next explore
how to deploy the number of BE jobs differently along with them.

Q1

Q2

……

Qn

BE jobs

1

2

3

4

Predictable

C1

C2

C3

C4

1. Request Tracer

LC service

…

servpod 1 servpod 2

LC
BE

servpod 3

LC
servpod 4

BE
LC

BE

LC
User

2
3

4
1

BE

…

2. Contribution Analyzer

Unpredictable…
User

4. BE Reclamation Queue3. Co-location Controller

Fig. 5. Design of Rhythm.
3.2 System Overview
The insight of Rhythm is that, the system throughput can be significantly improved through
distinguishable control over LC Servpods and BE workloads: (1) Servpods with larger contributions
to the tail latency need to be controlled conservatively to ensure adherence to the SLO. On the other
hand, Servpods with lesser contributions can be allowed to launch BE jobs aggressively, maximizing
resource utilization. (2) In the event of SLO violations, BEs with lower preemption losses are
prioritized for suspension or termination. This approach helps reduce unnecessary computation,
improving overall system efficiency.

Figure 5 highlights the overall design of Rhythm. Quantifying the contribution of an LC Servpod
can be done through an offline profiling of Servpods or an online analysis of real-time monitoring.
We choose the offline profiling way for three reasons: (1) As the contribution of a Servpod depends

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:9

on various factors, like the sojourn time, the access load, an online exploration process may take a
very long time until collecting sufficient data, resulting in frequent SLO violations during this period.
(2) Offline profiling can be conducted along with the necessary stress test before the launch of a
service, saving much profiling cost. (3) Unlike short BEs, LCs are commonly long-running services,
and the profiling cost can be amortized over time. As shown in Figure 5, we first characterize the
contributions of LC Servpods using two modules: request tracer and contribution analyzer. Then, we
manage the running of BE jobs using a controller at each physical machine.

The offline profiling of a Servpod’s contribution to the overall tail-latency includes two ways: The
directed way involves collecting the sojourn times of requests in each Servpod. The contribution
can then be derived through statistical modeling and analysis of these sojourn times. The indirected
way, like "bubble pressure" [59], applies a tunable pressure on individual Servpods to measure the
performance degradation of the LC service (e.g., increased tail latency or IPC). The contribution is
defined as the "bubble size" that a Servpod can tolerate while still guaranteeing the SLO. However, as
shown in Figure 2, a Servpod exhibits varying sensitivities when subjected to interferences from dif-
ferent bubbles [69]. In addition, the workload variation also significantly affects the performance of
the LC service. Relying solely on the "bubble pressure" approach, which generates one-dimensional
interference, is inadequate. For example, a CPU-intensive Servpod that contributes significantly to
the overall tail latency might be able to tolerate strong interferences from an I/O-intensive bubble.
Furthermore, designing a single bubble suite that can represent all types of BE jobs is impractical.
Therefore, we choose the directed way to characterize the contributions of Servpods.

The request tracer of Rhythm identifies the service call paths of requests and records their
sojourn time at each Servpod when the LC service runs independently. This data is then used
by the contribution analyzer to calculate the contribution of each Servpod to the tail latency.
The contribution is derived using statistical metrics such as mean, variance, and the Pearson
correlation coefficient of the sojourn times. This characterization is based solely on the LC service
itself, and its cost increases linearly with the number of Servpods. Compared to profiling-based
approaches that measure interference in combinations of𝑀 LC services and 𝑁 BE jobs (resulting
in𝑀 × 𝑁 measurements), Rhythm significantly reduces the cost to just𝑀 . The controller utilizes
a contribution-based threshold methodology to control resource allocation for BE jobs on each
machine. It calculates control thresholds for different Servpods using a thresholding algorithm and
then employs a trial-and-error approach to deploy or reclaim BEs.
The controller maintains a reclamation priority queue for all BEs and updates it periodically.

When an SLO violation occurs, the controller selects the BE with the highest priority from the queue
for reclamation. The BE workloads are categorized into two groups: predictable and unpredictable.
Predictable BEs are those whose makespan can be easily and accurately estimated. For example,
the makespan of MapReduce or Spark applications can be estimated based on the proportion of
processed data. Rhythm can utilize offline profiling-free prediction models like [71, 77] to estimate
the makespan of these BEs. With the predicted makespan, the preemption losses of the predictable
BEs can be derived using Formula 1. The opposite of the preemption loss is considered as the
reclamation priority for these BEs. On the other hand, unpredictable BEs have makespans that are
difficult to estimate accurately. In such cases, it is not possible to derive their preemption losses under
reclamation. Instead, the unpredictable BEs are prioritized based on the direct computation loss,
which is the amount of recomputation required after preemption. To guide the reclamation process,
the predictable and unpredictable priority queues are combined using a Multi-Level Reclamation
Queue (MLRQ) method based on the Borda count. This method assigns weights to the priority
queues and combines them to determine the overall reclamation priority.

For a newly deployed LC service, we activate both the request tracer and contribution analyzer only
once for characterizing its Servpods’ contributions. While each server controller continues running

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:10 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

independently for controlling BE jobs along with each Servpod, its thresholding algorithm (i.e.,
the only step that requires coordination among Servpods) also runs only once to derive thresholds.
Hence, the characterization cost is low and Rhythm has good scalability.

3.3 Request Tracer
Each request towards an LC service may pass a number of different Servpods. The request tracer
identifies the causal path of a request and constructs a causal path graph (CPG), which is a directed
acyclic graph 𝐺 (𝑉 , 𝐸) describing the request process. Vertices in 𝑉 are event sets of Servpods, and
edges 𝐸 represent causal relations between events. To record the sojourn time in which a request
stays at a Servpod, we also need to record the arrival and departure time at each Servpod. When
there are multiple components in a Servpod, we only record the arrival time at the entry component
and the departure time at the exit component.
The key challenge is to capture the system events in 𝑉 and find the causality of them. We

collect the relevant system calls at LC Servpods. However, the calling stack in a Servpod could
be associated with a depth of more than hundreds of system calls due to the frequent switches
between the user space and kernel. Many of them are generated by other unrelated processes,
including operating system processes or other applications. To filter the unrelated events, we
record four specific events in each LC Servpod: syscall_accept indicates the acceptance of a re-
quest; tcp_sendmsg represents the sending of data package; tcp_rcvmsg represents the receiving
of data package; and syscall_close is the close of a request call, where we denote them as AC-
CEPT, RECV, SEND and CLOSE, respectively. Each event is structured with four attributes: event
type, timestamp, context identifier and message identifier. In particular, the context identifier is
defined as a quad: < ℎ𝑜𝑠𝑡𝐼𝑃, 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑁𝑎𝑚𝑒, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝐷 >, which can be used to filter
out noise system calls from unrelated processes. The message identifier is defined as a five-tuple:
< 𝑠𝑒𝑛𝑑𝑒𝑟𝐼𝑃, 𝑠𝑒𝑛𝑑𝑒𝑟𝑃𝑜𝑟𝑡, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐼𝑃, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑃𝑜𝑟𝑡,𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑖𝑧𝑒 >, which can be used to filter out
noises from unrelated communications.

Client

Haproxy

Tomcat

Amoeba

Mysql

)0(
1,0S)0(

0,1R

)4(
4,3R)4(

3,4S

)2(
2,1R)2(

3,2S)2(
2,3R)2(

3,2S)2(
2,3R)2(

1,2S

)3(
3,2R)3(

2,3S)3(
3,2R)3(

4,3S)3(
3,4R)3(

2,3S

)1(
1,0R)1(

2,1S)1(
1,2R)1(

1,0S event)(
,
k
jiS

message relation
context relation

Fig. 6. The CPG constructed by a request to e-commerce.

Next, we show how to identify the causality of these events, including intraServpod causality and
interServpod causality. IntraServpod causality denotes the causality of a pair of RECV and SEND
events inside a Servpod. We use the context identifier to identify their causality. That is, a RECV
event happens before a SEND event if they share the same hostIP, program name, process ID and
thread ID. InterServpod causality denotes the causality of a pair of SEND and RECV events between
neighbor Servpods. A SEND event happens before a RECV event at the neighbor Servpod if they
share the same message identifier.
Denote by 𝑆 (𝑘)

𝑖, 𝑗
(or 𝑅 (𝑘)

𝑖, 𝑗
) the SEND (or RECV) event recorded in node 𝑘 ; 𝑖, 𝑗 represents the data

flow from node 𝑖 to 𝑗 . Figure 6 shows an example CPG constructed by a request to E-commerce.
Note that there may be hundreds of system events in the process, we only list part of them here.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:11

Client

CNode1

CNode2

)0(
1,0S

)2(
1,2S)2(

2,1R)2(
2,1R)2(

1,2S

)1(
1,0R)1(

1,0R

)0(
1,0S

)1(
2,1S)1(

2,1S)1(
1,2R)1(

0,1S

)0(
0,1R

)1(
2,1R)1(

0,1S

)0(
0,1R Context Order

request A
request B

Fig. 7. IntraServpod causality: request B is issued earlier by Servpod1, but returned later than request A.

How is the intraServpod causality of nonblocking threads identified? Each RECV event is
matched with a SEND event with respect to their order of occurrence (i.e., timestamp). If the LC
thread runs in blocking mode, this order can be detected easily using the context identifier. In case
of nonblocking threads, a later-issued request may return earlier than an earlier-issued request
(Figure 7).

Since they may share the same context identifier, the mappings of RECV and SEND of them
would be incorrect, resulting in an incorrect calculation of sojourn time at the Servpod. In this
case, we do not identify the accurate intraServpod causality directly, but avoid its side effect on
the calculation of the sojourn time through analyzing the mean sojourn time of all requests. For
example, the mean sojourn time of request A and B at Servpod 1 in Figure 7 is not affected by
the mismatching, because we have (𝑆 (1)

1,2 − 𝑅
(1)
0,1) + (𝑆 (1)

1,0 − 𝑅
(1)
2,1) + (𝑆

′ (1)
1,2 − 𝑅

′ (1)
0,1) + (𝑆

′ (1)
1,0 − 𝑅

′ (1)
2,1) =

(𝑆 (1)
1,2 − 𝑅

′ (1)
0,1) + (𝑆 (1)

1,0 − 𝑅
(1)
2,1) + (𝑆

′ (1)
1,2 − 𝑅

(1)
0,1) + (𝑆

′ (1)
1,0 − 𝑅

′ (1)
2,1).

How is the interServpod causality of persistent TCP connections identified? If the
communication between LC neighbor Servpods is implemented using persistent TCP connections,
multiple requests may share the same message identifier. In this case, pairing SEND and RECV
events with respect to their order of occurrence could also lead to mismatching (i.e., incorrect
interServpod causality). Similar to the calculation in the intraServpod causality, we avoid its side
effect by analyzing the mean sojourn time of communications of all requests in the design of the
contribution analyzer. That is, the mean sojourn time of communications between CNode 1 and
CNode 2 in Figure 7 is (𝑅

′ (2)
1,2 − 𝑆

′ (1)
1,2) + (𝑅 (2)

1,2 − 𝑆
(1)
1,2) + (𝑅 (1)

2,1 − 𝑆
(2)
2,1) + (𝑅

′ (1)
2,1 − 𝑆

′ (2)
2,1) = (𝑅

′ (2)
1,2 − 𝑆

(1)
1,2) +

(𝑅 (2)
1,2 − 𝑆

′ (1)
1,2) + (𝑅 (1)

2,1 − 𝑆
′ (2)
2,1) + (𝑅

′ (1)
2,1 − 𝑆

(2)
2,1). Note that errors still can be caused by unsynchronized

clocks between machines. Fortunately, it can be compensated if the Servpods are called following a
nested chain model (i.e., a Servpod invokes a callee Servpod and waits for the callee’s results before
it can return). Otherwise, there will be a skew in the derived communication sojourn time.

3.4 Contribution Analyzer

1 13 25 37 49 61 73 85

% of max load

0

50

100

150

200

250

L
a
te

n
c
y
 (

m
s
)

Haproxy

Tomcat

Amoeba

MySQL

99th

(a) Average sojourn time

1 13 25 37 49 61 73 85

% of max load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o

e
ff
ic

ie
n

t
o
f
v
a

ri
a
ti
o
n

Haproxy

Tomcat

Amoeba

MySQL

1 13 25 37 49 61 73 85

% of max load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o

e
ff
ic

ie
n

t
o
f
v
a

ri
a
ti
o
n

Haproxy

Tomcat

Amoeba

MySQL

(b) Normalized coefficient of variations
Fig. 8. The average sojourn time of Servpods in E-commerce website and their normalized coefficient of
variations collected in solo-run.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:12 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

Figure 8a shows the average sojourn time of the four Servpods of E-commerce and the overall
99𝑡ℎ percentile latency under different request loads. Figure 8b shows the normalized coefficient
of variation of their sojourn times. We find that, HAProxy contributes less than 5% of the overall
latency, while its variance takes more than 20% among four Servpods. Amoeba’s sojourn time is
also small but very stable, i.e., its coefficient of variance is the smallest. For the MySQL and Tomcat,
when the load is less than 50% of the max load, MySQL has a smaller average sojourn time than
Tomcat, and when the load exceeds 50%, its sojourn time increases much faster than that of Tomcat.
However, MySQL’s variance is always much larger than Tomcat. Based on the observation, we
consider three principles that guide our definition of contribution:

(1) Servpods with a higher average sojourn time contribute more to tail latency. The first principle
highlights the average sojourn time of each Servpod. Tail latency surely increases over each
Servpod’s average sojourn time. For example, MySQL contributes the most on 99𝑡ℎ percentile
latency when the load is high in Figure 8a.
(2) Servpods with higher sojourn time variance contribute more to tail latency. This principle

relates tail latency to the fluctuation characteristic of each Servpod, since the fluctuations constitute
the "heavy-tail" of overall latency. For example, while Tomcat and MySQL have a similar average
sojourn time when the request load is in the range [25%, 49%]. However, the 99𝑡ℎ percentile latency
increases significantly due to the high variance of MySQL (Figure 8b).
(3) Servpods that are highly correlated with the tail latency contribute more to tail latency.

Suppose there exists a Servpod 𝑋 which has a constant mean and coefficient of variance of sojourn
times over different loads, then the vary of tail latency would be independent of𝑋 if the contribution
is derived merely based on the mean and normalized and coefficient of variance. Hence, we also
analyze the correlation between each Servpod’s sojourn time and the tail latency, and take it as an
important factor of the contribution.

Following the principles above, we next show how to derive the contribution of a Servpod. Since
the request sojourn time at each Servpod may be incorrect due to the mismatch of SEND and RECV,
we use the mean sojourn time in the definition. Denote 𝑇𝑖 as the average sojourn time of Servpod 𝑖

under all load levels and 𝑇 𝑗

𝑖
as the average sojourn time of Servpod 𝑖 under load 𝑗 ; then, we have

𝑇𝑖 =
∑𝑚

𝑗=1𝑇
𝑗

𝑖
/𝑚, where𝑚 is the number of loads we used. We derive the weight of average sojourn

time by Servpod 𝑖’s as follows, where 𝑛 is the number of Servpods.

𝑃𝑖 =
𝑇 𝑖

𝑛∑
𝑘=1

𝑇𝑘

(2)

We use the Pearson Correlation Coefficient (𝜌𝑇𝑖 ,𝑇𝑡𝑎𝑖𝑙) to evaluate the correlation between Servpod 𝑖
and the overall tail latency of the LC service (𝑇𝑡𝑎𝑖𝑙 denotes the overall tail latency, and 𝑡𝑎𝑖𝑙 could be
the 99𝑡ℎ, 99.9𝑡ℎ percentile, etc.). Let 𝑇 𝑗

𝑡𝑎𝑖𝑙
be the 𝑡𝑎𝑖𝑙 latency under load 𝑗 , then, we have,

𝜌𝑇𝑖 ,𝑇𝑡𝑎𝑖𝑙 =

𝑚∑
𝑗=1

(𝑇 𝑗

𝑖
−𝑇 𝑖) (𝑇 𝑗

𝑡𝑎𝑖𝑙
−𝑇 𝑡𝑎𝑖𝑙)√︄

𝑚∑
𝑗=1

(𝑇 𝑗

𝑖
−𝑇 𝑖)

2
√︄

𝑚∑
𝑗=1

(𝑇 𝑗

𝑡𝑎𝑖𝑙
−𝑇 𝑡𝑎𝑖𝑙)

2
(3)

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:13

We denote 𝑉 as the normalized coefficient of variation (𝑉) to derive the contribution by the
Servpod 𝑖’s variance as follows,

𝑉𝑖 =
1
𝑇 i

√√√
1

𝑚(𝑚 − 1)

𝑚∑︁
𝑗=1

(𝑇 𝑗

𝑖
−𝑇 𝑖)

2
(4)

Finally, we define the contribution of Servpod 𝑖 using their product:
𝐶𝑖 = 𝑓 (𝜌𝑇𝑖 ,𝑇𝑡𝑎𝑖𝑙 , 𝑃𝑖 ,𝑉𝑖) = 𝜌𝑇𝑖 ,𝑇𝑡𝑎𝑖𝑙𝑃𝑖𝑉𝑖 (5)

If there exists fan-out in a request, the end-to-end latency is determined by the latency of the
critical path, i.e., the path (denoted by 𝑅) with the longest time. A Servpod 𝑖 not on 𝑅 can tolerate
stronger interference than those on 𝑅, and its contribution can be scaled down to:

𝐶𝑖 = 𝛼𝑖𝜌𝑇𝑖 ,𝑇𝑡𝑎𝑖𝑙𝑃𝑖𝑉𝑖 (6)

where 𝛼𝑖 =
∑

𝑗 ∈𝑅𝑖 𝑇𝑗/
∑

𝑘∈𝑅 𝑇𝑘 , and 𝑅𝑖 denotes the Servpod set on the path that is non-critical but
longest among all paths through Servpod 𝑖 .

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10
mixed

Haproxy

Tomcat

Amoeba

MySQL

0 0.05 0.1 0.15 0.2
0

1.6

3.2

4.8

6.4

8
stream-dram

0 0.05 0.1 0.15 0.2
0

0.3

0.6

0.9

1.2

S
e

rv
p

o
d

 S
e

n
s
it
iv

it
y CPU-stress

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10
stream-llc

Fig. 9. Servpod sensitivity vs contributions: the increase in the 99𝑡ℎ percentile latency of E-commerce when a
single Servpod is interfered by different BEs: (1) mixed BEs of wordcount, imageClassify, LSTM, CPU-stress,
stream-dram and stream-llc, (2) Stream-dram, (3) CPU-stress, (4) Stream-llc.

Note that Equation 6 may not be the only way to define the contribution. We validate its
rationality though a comparative analysis between Servpod sensitivity and contribution. Figure 9
shows their correlation: The x-axis depicts the contributions of the four Servpods of E-commerce,
and the y-axis shows the sensitivity of them, which is defined as the increase in the 99𝑡ℎ percentile
latency under interference compared to that under the solo-run. We find that the sensitivity is
positively correlated with the contribution no matter what the BE is, proving that a Servpod with
higher contribution is usually more sensitive to interference. We implement the Servpod-level
control in algorithm 1 based on this contribution, and the experimental results show it works well.
(See Figure 13-15).

3.5 Co-locating Controller
Given the contributions of LC Servpods, we next present how the controller operates to control
the resource allocation and reclamation for BE workloads. We design a coordinated controller
running as an agent at every server holding the LC Servpod. Figure 10 shows its hierarchical
architecture: a top-level controller and four subcontrollers. The top-level controller makes decisions
on the BE jobs, including a load-based decision and a slack-based decision. The four subcontrollers
increase or decrease the resources allocated to BE jobs following the control instructions by the
top-level controller. In particular, top-level controllers first coordinate with each other to derive
two thresholds: loadlimit and slacklimit using the threshold mechanism. Then, each controller runs
independently to control BE jobs according to thresholds. If the top-level controller decides to cut or
stop BEs, it reads the BE reclamation queue and selects the highest priority one for operation. The
controller scales well as the number of Servpods increases because they do not have interactions
anymore after finding thresholds.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:14 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

CPU/LLC
Subcontroller

Frequency
Subcontroller

Memory
Subcontroller

Network
Subcontroller

Top-level controller

Request load
Load-based

decisions
Load monitoring
and thresholding

Slack =
gap(Toverall, SLA)

Slack-based
decisions

Slack monitoring
and thresholding

Grow_LLC
Grow_Cores
Release

IncreaseFreq
LowerFreq

IncreaseMem
LowerMem

IncreaseNet
LowerNet

Contribution

'LVDOORZ%(*URZWK���

6WRS%(���

6XVSHQG%(���

AllowBEGrowth���
CutBE();

Agent 1

Fig. 10. The architecture of a Rhythm agent
.

3.5.1 ThresholdingMechanisms. Under the solo-run of the LC service, we derive two thresholds
of loadlimit and slacklimit in each machine using the request load and contributions of Servpods.
Since contributions vary over LC Servpods, the thresholds are also different. In particular, loadlimit
denotes the “switch” determining whether or not to run BE jobs; slacklimit decides how many
resources are allocated to BE jobs.

0 10 20 30 40 50 60 70 80 90100

% of max load

0

0.2

0.4

0.6

0.8

C
o

V

CoV

Average

(a) MySQL

0 10 20 30 40 50 60 70 80 90100

% of max load

0

0.2

0.4

0.6

0.8

C
o

V

CoV

Average

(b) Tomcat

Fig. 11. The CoV of Servpod sojourn times increase over request loads. Determine the loadlimit of Servpods
in E-commerce using the first load point whose fluctuation is greater than the average. (CoV: normalized
coefficient of variation).

Loadlimit: The threshold loadlimit denotes the upper bound of the request load of the LC
service for allowing the running of BE jobs along with an LC Servpod. We configure this threshold
using the CoV of sojourn times across different requests at each Servpod. Figure 11a shows the
volatility of 𝐶𝑜𝑉 by the MySQL Servpod over the request load. We see that the fluctuation tends
to increase significantly when the request load exceeds 76% of the maximum allowable load. We
choose loadlimit as the first load point whose fluctuation is greater than the average. That is, we
have 𝑙𝑜𝑎𝑑𝑙𝑖𝑚𝑖𝑡 = 76% for the MySQL of the E-commerce website, meaning that if the load towards
MySQL exceeds 76% of the maximum allowable load, we have to suspend all BE jobs on this MySQL
machine. In the case of Tomcat, the loadlimit is 87% (Figure 11b).

Slacklimit: Let slack be the gap between the current tail latency and latency target in SLO. The
threshold slacklimit denotes the lower bound of slack for allowing the growth of BE jobs. It is
inversely related to the Servpod’s interference-tolerance factor. If a Servpod has a small contribution
to the overall latency, we only need a small 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 so that more BE jobs can be deployed in
this machine, or the subcontrollers can allocate more resources to BE jobs. We design an iterative
algorithm to find the best 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 for each machine based on LC Servpods’ contributions.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:15

Algorithm 1: findSlacklimit(𝐶𝑖)
Input: contribution of Servpod: 𝐶𝑖 , ∀𝑖 ∈ [1..𝑛];
Output: slacklimit for Servpod 𝑖;

1 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒 = 1 −𝐶𝑖/
∑𝑚

𝑖=1𝐶𝑖 ;
2 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 = 𝑐𝑢𝑟𝐿𝑖𝑚𝑖𝑡 = 1.0; // Initialization ;
3 𝑆𝐿𝑂_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑓 𝑎𝑙𝑠𝑒 ;
4 while 𝑐𝑢𝑟𝐿𝑖𝑚𝑖𝑡 > 0 do
5 𝑐𝑢𝑟𝐿𝑖𝑚𝑖𝑡 = 𝑐𝑢𝑟𝐿𝑖𝑚𝑖𝑡 − 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ;
6 run_system (𝑐𝑢𝑟𝐿𝑖𝑚𝑖𝑡) ;

// Running for 10 minutes ;
7 𝑆𝐿𝑂_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛=SLO_evaluation() ;
8 if SLO_violation = true then
9 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 = 𝑅𝑒𝑐𝑜𝑟𝑑 .pop() ;

10 break;
11 else
12 𝑅𝑒𝑐𝑜𝑟𝑑 .push(𝑐𝑢𝑟𝐿𝑖𝑚𝑖𝑡) ;

Algorithm 2: Decision making by top controller
1 Estimate slack based on monitored latency and SLO;
2 while True do
3 𝑠𝑙𝑎𝑐𝑘 = (𝑇 𝑆𝐿𝑂

𝑡𝑎𝑖𝑙
−𝑇𝑡𝑎𝑖𝑙)/𝑇 𝑆𝐿𝑂

𝑡𝑎𝑖𝑙
;

4 if 𝑠𝑙𝑎𝑐𝑘 < 0 then
5 StopBE();
6 else if 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 > 𝑙𝑜𝑎𝑑𝐿𝑖𝑚𝑖𝑡 then
7 SuspendBE();
8 else if 0 < slack < 𝑠𝑙𝑎𝑐𝑘𝐿𝑖𝑚𝑖𝑡/2 then
9 CutBE();

10 else if 𝑠𝑙𝑎𝑐𝑘𝐿𝑖𝑚𝑖𝑡/2 < slack < 𝑠𝑙𝑎𝑐𝑘𝐿𝑖𝑚𝑖𝑡 then
11 DisallowBEGrowth();
12 else
13 AllowBEGrowth();
14 sleep(2 seconds);

Algorithm 1 presents the details. We first normalize the contribution of each Servpod among all
LC Servpods and initialize the slacklimit of each Servpod with 1.0. The normalized contribution
will be used as a stepsize for updating the slacklimit. The algorithm proceeds in a while loop until
finding the minimum slacklimit with the SLO guarantee. In each loop, we gradually decrease the
value of the 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 of each Servpod by their respective 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒 . Then, we run the LC workload
at this configuration for a while. If the SLO is violated, we step backward and update the slacklimit.

Algorithm 1may have different outputs of 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 depending on the BE used during 𝑟𝑢𝑛_𝑠𝑦𝑠𝑡𝑒𝑚
(𝑐𝑢𝑟𝐿𝑖𝑚𝑖𝑡). We recommend to run the algorithm with representative, mixed-intensive BEs and
run multiple times to increase its accuracy. In our experiment, the best 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 for Tomcat and

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:16 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

HAProxy are 0.078 and 0.032, respectively, whereas for MySQL and Amoeba, they are 0.347 and 0.04,
respectively. Hence, we can launch many more BE jobs on Amoeba, Tomcat and HAProxy than on
MySQL.

3.5.2 Control Operation. Loadlimit and slacklimit define a reliable boundary for startup and
adjustment of BE jobs, enabling Rhythm to implement more precise control over BEs based on
Servpod while ensuring SLO compliance.
Top controller: Rhythm compares the real-time request load and slack with the Loadlimit and
slacklimit and manages the running of BE jobs through the five decisions released: StopBE, CutBE,
DisallowBEGrowth, AllowBEGrowth and SuspendBE. In particular,
(1) StopBE immediately kills the top job in BE reclamation queue and releases all its resources.
(2) SuspendBE pauses all of the running BE jobs, but they can still keep their memory space.
(3) CutBE allows the existing BE jobs to continue running, but reclaims part of the allocated

resources from the top job in BE reclamation queue.
(4) DisallowBEGrowth does not allow the number of BE jobs increase, but the existing BE jobs

can still hold their resources and run continually.
(5) AllowBEGrowth allows subcontrollers to allocate more resources to BE jobs and increase the

number of BE jobs.
Denote 𝑇 𝑆𝐿𝑂

𝑡𝑎𝑖𝑙
as the tail latency requirement stated in SLO. The decision-making algorithm is

shown in Algorithm 2.
Subcontroller: There are four subcontrollers in eachmachine. They periodically adjust the resource
allocations between LC service and BE jobs following instructions from top controller and BE
reclamation queue. While frequent monitoring and adjustment are effective to detect the load burst
and protect the SLO of LC workload, it also causes more runtime overhead. To assess the tradeoffs
between efficiency and performance, we set the operation period of each controller thread to 2
seconds. The experimental results also validate the reliability of our design. (Figure 19).
(1) CPU/LLC subcontroller: We adopt the same control as in Heracles [51] for allocating cores,

LLC, and memory bandwidth. When it is allowed to deploy BE jobs, a BE job is activated
and configured with one core, 10% memory bandwidth, and 10% LLC. Both CutBE and
AllowBEGrowth adjust the cores, MB and LLC of BE jobs at the granularity of one core, 10%
memory bandwidth and 10% LLC, until no more resources are available or all BE’s resources
have been released.

(2) Frequency subcontroller: It monitors the power of the CPU periodically and adjusts the
frequency using DVFS. If the power has exceeded 80% of TDP (thermal dissipation power)
and the frequency of the LC service is less than the minimum allowable frequency (for
meeting SLO), it will reduce the operating frequency of BE jobs at the stepsize 100 MHz to
ensure sufficient power for the LC service.

(3) Memory subcontroller: It monitors the memory utilization of the LC service. A newly started
BE job is initialized with 2 GB of memory, and the adjustment stepsize for CutBE and
AllowBEGrowth is 100 MB.

(4) Network subcontroller: It continuously monitors the bandwidth of LC services (𝐵𝐿𝐶), and
allocates bandwidth of 𝐵𝑙𝑖𝑛𝑘 − 1.2𝐵𝐿𝐶 to BE jobs.

3.6 BE Reclamation
While operations StopBE and CutBE are activated by Algorithm 2, the reclaimed resources from
BEs are redistributed to LCs in order to restore the SLO. However, selecting the appropriate BE
to reclaim can be challenging, as it requires finding a balance between quick SLO recovery and

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:17

minimal throughput degradation. We have observed that the majority of running BEs in datacenters
can be categorized into three groups: big data, artificial intelligence (AI) and scientific computing. Big
data applications, such as MapReduce and Spark [3, 36, 82, 90], involve processing large datasets,
and their running time can be estimated based on the progress of data processing. AI training
[4, 61, 85] focuses on achieving a desired level of accuracy for neural models, and their running time
depends on the convergence rate of the models rather than data processing. Scientific computing
[1, 53] primarily involves short-term computations that don’t involve extensive data processing.
Different BE applications have varying structures, with some being monolithic and others

consisting of multiple components. Reclaiming resources from different BE components can have
diverse effects on the BE throughput. It may simply reduce the processing speed or, in some cases,
even prevent the BE from running altogether. To minimize these negative impacts, we evaluate
how resource reclamation affects the occupied service of each BE. The occupied service is calculated
using 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 × 𝑡𝑖𝑚𝑒 . In Formula 1, if the occupied service of a BE increases after reclamation, it
indicates a preemption loss (𝐿 > 0). This preemption loss quantifies the negative impact on the BE
due to resource reclamation.
To derive 𝐿, we need to know the running time of the BE, i.e., 𝑡𝑝𝑚𝑡𝑛 and 𝑡𝑜𝑔𝑛𝑙 . We classify BEs

into two categories based on their predictability. If a specific BE has a predicting model that can
accurately estimate its running time, we classify it as predictable. Otherwise, it is classified as
unpredictable. Here are examples of predicting models for different types of BEs: (1) Spark-based
big data applications: These applications can adopt the slowdown model in [77] to estimate the job
completion time after reclamation. The model takes inputs such as job completion statistics (𝑐),
elapsed time (𝑡), and the proportion of resource (𝑝) under preemption. The expected completion
time can be calculated using 𝑡𝑝𝑚𝑡𝑛 = ((𝑡/𝑐) × (1 − 𝑐)/𝑝) + 𝑡 . The job completion statistics 𝑐 can be
obtained through the HTTP API exposed by Spark. (2) Deep learning training: These workloads
can employ the white box model proposed in [49, 71] to predict the completion time under different
resource configurations. The model takes inputs such as the remaining number of training steps (𝑠),
elapsed time (𝑡), and step processing speed (𝑞). The expected completion time can be calculated
using 𝑡𝑝𝑚𝑡𝑛 = (𝑠/𝑞) + 𝑡 . The remaining number of steps can be updated according to the real-time
loss value of the training job, while 𝑠 and 𝑞 can be estimated through model fitting. Other predicting
models, such as those proposed in [91, 104], can be used for estimating the completion time of
MapReduce and GPU workloads. It is important to note that Rhythm does not design its own
predicting models but instead utilizes existing models if available for accurate estimation of running
times.
For unpredictable BEs that cannot be accurately predicted, we prioritize them for reclamation

based on the amount of useless computation they generate. useless computation (𝑈) refers to the
repeated computation caused by reclamation. If a task becomes slower after resource reclamation
but does not require recomputation, 𝑈 = 0. In cases where multiple BEs have 𝑈 = 0, we break
the tie using their attained service, i.e., BE elapsed time × resource. If a task fails, a portion of its
computation becomes useless, resulting in𝑈 > 0. Useless computation is related to the fault-tolerant
mechanism of BE. The existing fault-tolerant mechanisms can be broadly categorized into two
types:

• Temporal redundancy-based mechanisms involve rescheduling failed tasks on a backup server
to resume execution, which can result in delayed task execution [105]. Tomitigate the repeated
computation caused by rescheduling, checkpointing is often employed. Checkpointing allows
a failed task to be restarted from the latest saved checkpoint instead of starting from the
beginning [28]. Thus, we derive the useless computation as follows,

𝑈𝑡𝑒𝑚𝑝 = 𝑡𝑐𝑘𝑝𝑡𝑟𝑜𝑔𝑛𝑙 (7)

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:18 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

where 𝑡𝑐𝑘𝑝𝑡 represents the computation time since the latest checkpoint time.
• Space redundancy-based mechanisms involve creating multiple replicas of the same task
to improve efficiency [13, 14]. These replicas run concurrently, and the task is considered
successful if at least one of the replicas completes successfully. In this case, if a task has
more than one replica, reclamation does not generate any repeated computation, resulting in
𝑈𝑠𝑝𝑎𝑐𝑒 = 0. However, if all replicas of a task fail, the task needs to be rescheduled, and the
useless computation is calculated using the same formula as in Formula 7, i.e.,𝑈𝑠𝑝𝑎𝑐𝑒 = 𝑈𝑡𝑒𝑚𝑝 .

Rhythm adopts a priority-based reclamation algorithm for BE tasks to reduce the system pre-
emption loss. For unpredictable BE tasks, we mainly consider their useless computation (𝑈) after
resource reclamation. For predictable BE tasks, the priority is defined based on its estimated pre-
emption loss (𝐿). Predictable and unpredictable BEs are categorized into two separate reclamation
queues, which poses a challenge when selecting the "best" BE for reclamation. To address this
issue, we utilize the Borda count voting method [8] to merge the Predictable and unpredictable
queues into a single BE reclamation queue. The Borda count is a voting mechanism that considers
multiple influencing factors. Each voter ranks the candidates based on their preferences, and the
final ranking is determined by integrating the rankings from different voters. In our case, each BE
receives points based on its ranking in each sequence, and the BE with the lowest sum of points
across all sequences is preempted first.

A

A B

D E

Predictable BE Queue

Unpredictable BE Queue

Predictor

C AB C

Preemption Loss

A BC

D E

Useless computation :1+0=1 : 2 C : 3Score B
: 2*2=4 E : 2D

Ranking

Points

1 2 3

2 1

AB C

A BC

D E

Predictable L-Queue

Predictable U-Queue

Unpredictable U-Queue

0

Borda Count

MLRQ

A

E B

… … …

C1 C2 C3 C4

…

D

C

Q1

Q2

Qn

Fig. 12. Queue merging through the Barda count voting method.

Figure 12 shows our design of how to merge the predictable and unpredictable BE queues. We
use the Borda counting method [9], a voting system used for winner elections in which each voter
ranks the list of candidates in order of preference. A job 𝑖 receives a number of points (denoted by
𝑛𝑝𝑜𝑖𝑛𝑡𝑠) from a sequence. It is derived as follows,

𝑛𝑖𝑝𝑜𝑖𝑛𝑡𝑠 = 𝐽 − 𝑟𝑖 (8)

where 𝑟𝑖 denotes the ranking of 𝑖 and 𝐽 denotes the number of jobs in the sequence. The sum of
𝑖’s points from different sequences decides the winner. That is, the task with the highest 𝑛𝑠𝑐𝑜𝑟𝑒 is
selected first for reclamation.

𝑛𝑖𝑠𝑐𝑜𝑟𝑒 =
∑︁

𝐿−𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒,𝑈−𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
𝑛𝑖𝑝𝑜𝑖𝑛𝑡𝑠 (9)

Since it is not possible to derive the preemption loss (𝐿) for unpredictable BEs (i.e., unpredictable
BEs will not appear in the L-sequence), it would be unfair to directly apply the Borda counting
method. Therefore, we also maintain a useless computation sequence for predictable tasks. Similar to
unpredictable tasks, the BEs in the sequence are sorted in ascending order of useless computation (𝑈).
The predictable useless computation sequence (U-sequence) is then combined with the preemption
loss sequence (L-sequence) to calculate scores for all predictable tasks using Formula 9. Since
unpredictable BEs only appear in one sequence while predictable BEs appear in two sequences,
we double the score obtained by unpredictable BEs for a fair comparison, i.e., 𝑛𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑛𝑝𝑜𝑖𝑛𝑡𝑠 .

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:19

Then, the rankings of predictable and unpredictable BEs are combined and sorted in descending
order of their scores.
Given the global BE reclamation queue, the operations StopBE or CutBE always select the top

entry in the queue to execute under SLO violation. If the first entry is not available on the local
server, the BEs are sequentially substituted until a match is found. To expedite the SLO recovery
process, we further organize the BE reclamation queue into a Multi-Level Reclamation Queue
(MLRQ), where BEs are categorized into multiple levels, and StopBE (or CutBE) always chooses the
top level for reclamation. In Figure 12, each server maintains a local MLRQ and has a long subqueue
in each MLRQ level if its local Servpod contributes more to tail latency. When executing StopBE
(or CutBE), resources are reclaimed simultaneously from all BE workloads in the top MLRQ level.
This means that more resources are reclaimed from the BEs that are co-located with the Servpod
making larger contributions. The number of BEs in an MLRQ level (𝑞𝑀𝐿𝑅𝑄) is determined based on
the Servpod contributions. That is, we have,

𝑞𝑖𝑀𝐿𝑅𝑄 = 𝑛𝐵𝐸 × 𝐶𝑖∑𝑚
𝑖=1𝐶𝑖

(10)

where 𝑛𝐵𝐸 is the number of BEs in the system and𝐶𝑖 is the contribution of Servpod 𝑖 . In the example
of Figure 12, the four servers keep 1, 3, 1, 2 BEs in each MLRQ level respectively, corresponding to
the Servpod contributions.

4 IMPLEMENTATION
We have developed a prototype of Rhythm using approximately 6.6K lines of code (KLOC) of C,
Java, Python, and Linux Shell. It runs on the Linux operating system, and supports the automatic
profiling of Servpods using a load generator for generating a broad spectrum of access loads and a
SystemTap [40]-based system events analysis tool. It cooperates with Linux container technology
to manage the resource allocation for LC services and BE jobs. It also provides APIs on latency
and system status monitoring, contribution analysis, parameters exchanging, BE deploying and
resource allocation updating in each Servpod agent. The interactions with the operating system are
mainly implemented through JDK runtime library and Linux shell interface.
Isolation: For mitigating the performance interference between the LC service and BE jobs, we
utilize resource isolation mechanisms as follows: (1) Core/thread isolation: Rhythm uses the cpuset
cgroups of the Linux operating system to bind LC and BE jobs on different physical cores to reduce
the interference caused by thread contention. (2) LLC/Memory Bandwidth isolation: Rhythm uses
Intel CAT (cache allocation technology) and MBA (Memory Bandwidth Allocation) to partition the
LLC and Memory Bandwidth resources. By dividing these resources, Rhythm dedicates a portion to
the LC service and reserves the remaining portion for BE jobs. (3) Network isolation: Rhythm uses
the qdisc in the Linux operating system to control bandwidth allocation for the traffic flows of
both LC and BE jobs. (4) Power isolation: Rhythm uses the running average power limit (RAPL) to
monitor the CPU power consumption in each CPU socket and DVFS to redistribute power among
different cores.
Interact with scheduler: When an LC arrives, the scheduler first decides the schedule for its
components. Components that are co-located form Servpods, which are profiled using a load
generator. This profiling helps derive loadlimit and slacklimit. Then, the thresholding mechanism
decides whether it is appropriate to deploy or reclaim BEs. If deployment is allowed, the scheduler
checks the waiting queue of BE jobs and dispatches them to physical machines that have sufficient
available resources. When resources need to be reclaimed from BEs, the top-controller selects BEs
in the top MLRQ level for reclamation. Once the decision about which BEs to reclaim is made,
the subcontrollers at the local physical machines take charge of determining the specific resource

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:20 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

Table 1. LC workloads and BE jobs.
LCWorkloads BE Jobs

Applications Domain Servpods MaxLoad SLO Containers Workload Domain -intensive
Redis [74] Key-Value database Master, Slave 86K QPS 1.15ms 18 Stream-llc [23] LLC-benchmark in iBench LLC

Elasticsearch [27] Index engine Index, Kibana 750 QPS 200ms 12 Stream-dram [23] DRAM-benchmark in iBench DRAM

E-commerce[62] TPC-W website Haproxy, Tomcat,
Amoeba, MySQL

1300 QPS 250 ms 16 CPU-stress [57] CPU stress testing tool CPU
LSTM Time series prediction service mixed

Solr [81] Web search Apache+Solr, Zookeeper 400 QPS 350ms 15 ImageClassify Image classification on CycleGAN[107] mixed

Elgg[29] Social network Nginx+PHP-FPM,
Memcached, MySQL

200 QPS 320ms 8 Spark-Bench [82] Wordcount, KMeans,
LogisticRegression, LinearRegression

mixed

SNMS[32] Microservice UserService,Frontend,
MediaService

1500 QPS 380ms 30 TensorFlow-Bench[4] Resnet50, Lenet, Alexnet mixed

Hotel Reservation[22] Microservice Fontend, Reserver, Database 1400 QPS 300ms 19 SciMark[2] Scientific computing mixed

allocation for those BEs. They ensure that the reclaimed resources are appropriately allocated to
other tasks or components as needed.
System integration: Rhythm can be integrated into container management framework like Kuber-
netes [48] or serverless cloud system. To integrate Rhythm into a container management framework
like Kubernetes, several steps need to be taken: (1) Extend the cAdvisor in kubelet of Kubernetes
to support the measurement of utilization of memory bandwidth, frequency&power and network
traffic; (2) Enhance the configuration module of Kubernetes to support the runtime control of the
resource allocation as Rhythm’s controller agent; (3) Associate the scheduler of Kubernetes with
the top-controller agent for providing feedback to scheduling algorithms.

5 EVALUATION
5.1 Methodology
Workloads: Table 1 summarizes the LC and BE workloads we used to evaluate the efficiency of
Rhythm. In particular, the maximum allowable request load (i.e., max load) is measured when the
arrival speed approaches the maximum processing speed. Their SLOs are not defined arbitrarily,
but following the principle: each LC service runs at its maximum allowable request load without
interference over 30 minutes, and we record the 99𝑡ℎ percentile latency per second and set the worst
one as the SLO. We also deploy multiple BE workloads on our testbed, including synthetic mi-
crobenchmarks that put strong pressure on a specific resource (i.e., LLC, CPU and DRAM), big data, AI,
and scientific computing benchmarks. In particular, we use the synthetic microbenchmarks, LSTM
and imageClassify for evaluating the co-location efficiency. We further extend BEs with more big
data, AI and scientific computing workloads for evaluating the efficiency of BE-distinguishable
reclamation.
Metrics:We co-locate an LC service with the BE jobs, and measure the system’s CPU and memory
utilization, and power consumption. We also use the metric of EMU to measure the overall system
throughput. In particular, 𝐸𝑀𝑈 = 𝐿𝐶 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡+𝐵𝐸 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 , where 𝐿𝐶 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 denotes
the request load for LC service normalized to its maximum allowable load, and 𝐵𝐸 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

denotes the average number of BE jobs successfully finished per hour normalized to when it runs
alone on a machine. Note that EMU may exceed 100% due to the resource sharing between the LC
service and BE jobs.
Testbed: LC service and BE jobs are deployed on a cluster with seven physical machines, four
of which are configured with 40 cores of a quad-socket Intel Xeon E7-4820 v4 @ 2.0 GHz and 64
GB of DRAM per socket and the other three are configured with 40 cores of a dual-socket Intel(R)
Xeon(R) Gold 6230 @ 2.0 GHz and 64 GB of DRAM per socket. The operating system is Ubuntu
14.04 with kernel version 4.4.0-31. We utilize containers for deploying multiple instances for LC
workloads. The detailed configurations of workloads are shown in Table 1. Although each container

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:215 25 45 65 85

% of max load

0
20
40
60
80

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

stream-llc stream-dram CPU-stress LSTM imageClassify wordcount improvement

5 25 45 65 85
% of max load

0
0.2
0.4
0.6
0.8
1

B
E

 T
hr

ou
gh

pu
t (a) Tomcat/E-com

5 25 45 65 85
% of max load

(b) Slave/Redis

5 25 45 65 85
% of max load

(c) Zookeeper/Solr

5 25 45 65 85
% of max load

(d) Memcached/Elgg

5 25 45 65 85
% of max load

(e) Kibana/ES

Fig. 13. The BE throughput at Servpods under different loads.

5 25 45 65 85
% of max load

0

20

40

60

80

C
P

U
 U

til
. (

%
)

(a) Tomcat/E-com

5 25 45 65 85
% of max load

(b) Slave/Redis

5 25 45 65 85
% of max load

(c) Zookeeper/Solr

5 25 45 65 85
% of max load

(d) Memcached/Elgg

5 25 45 65 85
% of max load

(e) Kibana/ES

Fig. 14. The CPU utilization at Servpods under different loads.

5 25 45 65 85
% of max load

0

25

50

75

100

M
em

B
W

 U
til

. (
%

) (a) Tomcat/E-com

5 25 45 65 85
% of max load

(b) Slave/Redis

5 25 45 65 85
% of max load

(c) Zookeeper/Solr

5 25 45 65 85
% of max load

(d) Memcached/Elgg

5 25 45 65 85
% of max load

(e) Kibana/ES

Fig. 15. The Memory bandwidth utilization at Servpods under different loads.

is configured with a specific capacity initially, its unused resources can be allocated to BE jobs
through the container resource control interface.
Overhead:After deploying Rhythm in the system, we measure its overhead and find that the request
tracer only consumes approximately 6% of the CPU and 3 MB of memory, and each controller runs
every 2 seconds only consumes 3.6% of the CPU and less than 50 MB of memory. Rhythm collects
request sojourn time in each Servpod by solo-run LC service only once, the off-line profiling takes
negligible overhead. For the collection of BE information and the maintenance of the BE reclamation
queue, Rhythm only needs 2 logical cores for supporting both predicting and reclamation. Among
them, big data workloads such as Spark are profiled by invoking the Restful interface; for sciMark
workloads, Rhythm only needs to record the timestamp of the start and the 𝑆𝑡𝑜𝑝𝐵𝐸 operation; for
AI jobs, Rhythm needs to scan its output log to check its progress.

5.2 Component-distinguishable Co-location
We firstly evaluate the component-distinguishable co-location ability of Rhythm, i.e. Rhythm-CDC.
That is, whenever SLO violation occurs, we just reclaim resources from all the co-located BE
workloads without distinguishing their priorities. All the experimental results are compared against
Heracles [51], which is a feedback-based method, but does not distinguish between Servpods: (1)
It disables BE jobs at all machines whenever the load exceeds 85%. (2) It disallows the growth
of BE jobs whenever the slack between the current tail latency and SLO target is less than 10%.
We observe that the measured SLO on our testbed is larger than those in Heracles because of the
different software configurations and hardware environments we used. To make a fair comparison,
our implementation of Heracles [51] also conducts its control using the same SLO as in Table 1.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:22 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao5 25 45 65 85

% of max load

0
30
60
90

120

M
e
B

 U
ti
liz

a
ti
o
n
 (

%
)

stream-llc stream-dram CPU-stress LSTM imageClassify wordcount

5 25 45 65 85
% of max load

0

15

30

45

60

E
M

U
 (

%
)

(a) E-commerce

5 25 45 65 85
% of max load

(b) Redis

5 25 45 65 85
% of max load

(c) Solr

5 25 45 65 85
% of max load

(d) Elgg

5 25 45 65 85
% of max load

(e) Elasticsearch

Fig. 16. EMU improvements ((𝐸𝑀𝑈𝑅ℎ𝑦𝑡ℎ𝑚−𝐶𝐷𝐶 − 𝐸𝑀𝑈𝐻𝑒𝑟𝑎𝑐𝑙𝑒𝑠)/𝐸𝑀𝑈𝐻𝑒𝑟𝑎𝑐𝑙𝑒𝑠) under different loads.

5 25 45 65 85
% of max load

0
30
60
90

120

C
P

U
 u

til
. (

%
)

(a) E-commerce

5 25 45 65 85
% of max load

(b) Redis

5 25 45 65 85
% of max load

(c) Solr

5 25 45 65 85
% of max load

(d) Elgg

5 25 45 65 85
% of max load

(e) Elasticsearch

Fig. 17. CPU utilization improvements ((𝐶𝑃𝑈𝑅ℎ𝑦𝑡ℎ𝑚−𝐶𝐷𝐶 − 𝐶𝑃𝑈𝐻𝑒𝑟𝑎𝑐𝑙𝑒𝑠)/𝐶𝑃𝑈𝐻𝑒𝑟𝑎𝑐𝑙𝑒𝑠) under different
loads.

5 25 45 65 85
% of max load

0

50

100

150

M
em

B
W

 u
til

. (
%

) (a) E-commerce

5 25 45 65 85
% of max load

(b) Redis

5 25 45 65 85
% of max load

(c) Solr

5 25 45 65 85
% of max load

(d) Elgg

5 25 45 65 85
% of max load

(e) Elasticsearch

Fig. 18. Memory bandwidth utilization improvements ((𝑀𝑒𝐵𝑅ℎ𝑦𝑡ℎ𝑚−𝐶𝐷𝐶 − 𝑀𝑒𝐵𝐻𝑒𝑟𝑎𝑐𝑙𝑒𝑠)/𝑀𝑒𝐵𝐻𝑒𝑟𝑎𝑐𝑙𝑒𝑠)
under different loads.

5.2.1 Servpod Analysis under Constant Load. Figures 13-15 show the BE throughput, CPU uti-
lization and memory bandwidth utilization at the Servpods of Tomcat/E-commerce, Slave/Redis,
Zookeeper/Solr, Memcached/Elgg, and Kibana/Elasticsearch. We see that the Rhythm-CDC is partic-
ularly effective when the load exceeds 65% of the max load. While Heracles can launch BE jobs at
a lower load, no co-location exists when the load is set as 85% of the max load because Heracles
does not allow co-location when the load > 0.85. Hence, in this case, the BE throughput, CPU
utilization and memory bandwidth utilization by BE jobs are all zero. In contrast, Rhythm-CDC
allows deploying BE jobs at the load > 0.85 since the loadlimits of Tomcat, Slave, Zookeeper,
Memcached and Kibana are 0.87, 0.91, 0.93, 0.87 and 0.9, respectively.

5.2.2 Overall Performance under Constant load. In Figure 13, we see that Rhythm-CDC increases
BE throughput by an average of 0.196, 0.296, 0.41, 0.185, and 0.194 compared with that of Heracles
for the five LC Servpods. In particular, Zookeeper is deployed with the most BE jobs due to its
large 𝑙𝑜𝑎𝑑𝑙𝑖𝑚𝑖𝑡 = 0.93 and small 𝑠𝑙𝑎𝑐𝑘𝑙𝑖𝑚𝑖𝑡 = 0.035. As we increase the load of the LC service, the
BE throughput is reduced due to the operation control by the controller. For the CPU utilization
in Figure 14, when we co-schedule Servpods with CPU-stress, the CPU utilization at all machines
could approach 80% at the 5% load due to the CPU-intensive nature of CPU-stress. LSTM can also
utilize CPU resources at more than 70%, because the training phase of LSTM heavily consumes CPU
resources. When they are co-located with other BE jobs, although they cannot achieve the same
CPU utilization, Rhythm-CDC still improves CPU utilization by an average of 7.98%, 11.44%, 27.59%,

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:23

8.4%, and 10.44%. For the memory bandwidth utilization in Figure 15, we see that Rhythm-CDC can
drive the utilization up to 82% when co-scheduling stream-llc and stream-dram with LC Servpods.
CPU-stress does not require much memory bandwidth, so the utilization is quite low. Generally,
Rhythm-CDC can improve memory bandwidth utilization by an average of 11.4%, 13.1%, 18.9%,
10.44%, and 10.57% compared with that of Heracles.

Rhythm-CDC improves the throughput and resource utilization not only when LC is scheduled
together with the extreme BEs, such as stream-llc, stream-dram, and CPU-stress, but also when BE
jobs are normal ones (LSTM, imageClassify and wordcount). Specifically, the average improvements
on BE throughput by extreme BEs and normal ones are 17.56% and 21.7%, respectively. Improvements
in CPU utilization are 25.54% and 29.53%, and improvements in memory bandwidth are 21.03% and
39.13%, respectively.

We next show the overall improvements in EMU and resource utilization by Rhythm-CDC. Figures
16-18 show that it generates a much higher EMU and resource utilization than Heracles in all
interference groups. Since both Rhythm-CDC and Heracles can deploy BE jobs at low load, the
improvements generally increase over the load, indicating that Rhythm-CDC is more effective when
the load towards the LC service is intensive.
In Figure 16, we see that Rhythm-CDC generates 11.6%, 18.4%, 24.6%, 14%, and 12.7% more EMU

on average than Heracles in E-commerce, Redis, Solr, Elgg, and Elasticsearch, respectively. In partic-
ular, when Solr is co-located with imageClassify/TensorFlowBench and wordcount/SparkBench,
improvements of up to 57% can be achieved because of the significant improvements in Zookeeper.
Figure 17 shows the CPU utilization improvements for the five LC services. Rhythm-CDC can im-
prove the CPU utilization by 22.2%, 19.1%, 35.3%, 20.6%, and 23% on average compared with that
of Heracles. co-locating LSTM and CPU-stress with the LC service performs much better utiliza-
tion than others because they both require CPU resources heavily, and an improvement of up to
112% can be achieved in the case of Elasticsearch. Figure 18 shows that Rhythm-CDC can improve
memory bandwidth utilization by 28.1%, 16.8%, 33.4%, 28.9%, and 19.5% on average compared with
that of Heracles. co-locating stream-dram (or wordcount/SparkBench) with the LC service shows
much higher improvements than the other BE jobs since they both consume considerable memory
bandwidth. The improvement even reaches 120% when co-locating stream-dram with Elasticsearch.

5.2.3 Overall Performance under Production Load. We also evaluate Rhythm-CDC using a production
request load from ClarkNet [19] to capture its improvement on resource utilization. The request
load illustrates clear periodicity (see the top in Figure 17), and the period length is 24 hours. In our
experiment, we scale down five days of the ClarkNet trace to six hours of workload for shortening
the experimental period, and the traffic load and fluctuating pattern are kept the same. Then, we
collect the resource efficiency in the period.

Figures 19a-19c show the average performance improvements compared to those of Heracles on
EMU, CPU utilization and memory bandwidth utilization under the production load, respectively.
We see that Rhythm-CDC can improve EMU by at least 12.4% in the Redis-Wordcount group and at
most by 31.7% in the Solr-ImageClassify group. For CPU utilization, Rhythm-CDC can achieve an
improvement of 26.2% in the Solr-Wordcount group. Formemory bandwidth utilization, Rhythm-CDC
can achieve an improvement of 34% in the Solr-Wordcount group. Generally, while Rhythm-CDC can
improve the performance in all interference groups, Solr benefits the most on EMU, CPU utilization
and memory bandwidth utilization among all of the five LC services.

Figure 19d presents theworst 99𝑡ℎ percentile latency normalized to the SLO latency of Rhythm-CDC
in production request loads. The actual 99𝑡ℎ latency increases with the request load due to the
increasing pressure in server end. Meanwhile, interference from the co-located BE jobs will also
cause performance degradation of LC service. But we see that Rhythm-CDC can strictly guarantee

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:24 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

15.4

16.2

27.4

16.1

21.7

23.2

21.2

12.7

20.5

20.7

20.0

18.2

26.2

25.0

18.2

14.0

30.3

23.4

24.5

22.4

18.8

17.3

31.7

25.2

16.8

16.6

12.4

31.2

14.5

21.2

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

15.0

20.0

25.0

30.0

(a) EMU (%)

12.1

12.8

22.8

12.7

17.7

19.1

17.3

9.7

16.7

16.8

16.2

14.6

21.8

20.7

14.6

10.9

25.4

19.3

20.3

18.4

15.2

13.9

26.6

20.8

13.4

13.2

9.5

26.2

11.3

17.3

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

10.0

15.0

20.0

25.0

(b) CPU Utilization (%)

17.1

17.1

34.0

19.7

22.1

29.5

28.9

15.5

32.1

24.7

27.4

29.0

18.9

20.5

21.7

23.9

16.5

32.7

22.6

13.4

16.3

14.7

27.2

22.6

14.0

SL SD LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

15.0

20.0

25.0

30.0

(c) MemBW Utilizaiton (%)

0.74

0.98

0.99

0.87

0.72

0.77

0.81

0.95

0.70

0.71

0.75

0.89

0.92

0.89

0.84

0.86

0.79

0.92

0.76

0.91

0.76

0.81

0.89

0.93

0.72

0.98

0.93

0.85

0.83

0.83

SL SD CS LS IC WC

BE Jobs

E-com

Redis

Solr

Elgg

ESL
C

 A
p
p
lic

a
ti
o
n
s

0.75

0.80

0.85

0.90

0.95

(d) 99𝑡ℎ latency/SLO
Fig. 19. The average performance improvements by Rhythm-CDC on EMU (a), CPU utilization (b), and membw
utilizaiton (c) under production load. (d) represents the 99𝑡ℎ percentile latency normalized to the latency
stated in SLO. (E-com: E-commerce, ES: Elasticsearch, SL: Stream-llc, SD: Stream-dram, CS: CPU-stress, LS:
LSTM, IC: ImageClassify/TensorFlowBench, WC: Wordcount/SparkBench.)

the SLO in all cases (the worst case is 0.99× SLO). The result shows the effectiveness of Servpod-level
control in Rhythm-CDC, which can improve throughput without hurting the SLO.

5.3 BE-distinguishable Reclamation
We further evaluate the BE-distinguishable reclamation ability of Rhythm, i.e., Rhythm-CDC-BR,
which supports both component-distinguishable co-location and BE-distinguishable reclamation.
We choose the resnet50, lenet, and alexnet from TensorFlow-Bench [4] as AI workloads, the kMeans,
logisticRegression, and linearRegression from Spark-Bench [82] as big data workloads, and sciMark
[2] as scientific computing workloads. They are submitted to the system following a Poisson process,
meaning they are randomly selected for submission whenever there is a new request. When the
SLO of an LC service is violated, Rhythm-CDC-BR uses a predictor (if available) to obtain the BE
preemption loss. As introduced in Section 3.6, our predictor currently supports the prediction
models proposed by Optimus [71] and Resource Deflation [77], which can estimate the completion
time of Spark and AI workloads without relying on offline characterization.

0 0.5 1.0 1.5 2

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

SLA=1.15

0 20 40 60 80 100

CPU Util.(%)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

(a) Redis

0 100 200 300 400

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

SLA=200

0 20 40 60 80 100

CPU Util.(%)

0

0.2

0.4

0.6

0.8

1

C
D

F

Rhythm-CDC-BR

Resource-Deflation

(b) Elastic-Search

Fig. 20. The performance comparison on latency, CPU utilization under the resource management of
Rhythm-CDC-BR and Resource-Deflation methods.

We firstly compare Rhythm-CDC-BR with Resource Deflation [77], a state-of-the-art approach
that employs a dynamic, multi-level cascading reclamation technique. We evaluate them using
the two LC services of Redis and Elastic-search. Figure 20 shows that although Resource Deflation
can achieve a higher CPU utilization than Rhythm-CDC-BR, it can only guarantee the SLO within
80% and 58.4% of the time. Meanwhile, Rhythm-CDC-BR can achieve 92.1% and 94.5% of the time
SLO guarantee. Clearly, as the intensity of co-location increases, the risk of SLO violations also
increases. This situation can be addressed by adjusting the loadlimit and slacklimit to enhance
the guarantee of SLO. In a real production environment, the determination of SLO is based on
business requirements. For example, LC services like search engines typically set the SLO as the

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:25

(a) Tomcat/E-com

5 25 45 65 85
% of max load

0
0.2
0.4
0.6
0.8
1

B
E

 T
hr

ou
gh

pu
t

Rhythm-CDC
Rhythm-CDC-BR

(b) Slave/Redis

5 25 45 65 85
% of max load

(c) Zookeeper/Solr

5 25 45 65 85
% of max load

(d) Memcached/Elgg

5 25 45 65 85
% of max load

(e) Kibana/ES

5 25 45 65 85
% of max load

Fig. 21. The BE throughput at Servpods under different loads.

(a) Tomcat/E-com

5 25 45 65 85
% of max load

0

25

50

75

100

C
P

U
 u

til
. (

%
) Rhythm-CDC

Rhythm-CDC-BR

(b) Slave/Redis

5 25 45 65 85
% of max load

(c) Zookeeper/Solr

5 25 45 65 85
% of max load

(d) Memcached/Elgg

5 25 45 65 85
% of max load

(e) Kibana/ES

5 25 45 65 85
% of max load

Fig. 22. The CPU utilization at Servpods under different loads.

99𝑡ℎ percentile latency not exceeding 100 milliseconds. Administrators can adjust the loadlimit
and slacklimit based on the actual business SLO to achieve full SLO guarantee (see § 5.6). Resource
Deflation [77] nearly impossible to provide a guarantee for SLOs due to its overly conservative
approach. It always aims to reclaim as few resources as possible, which can lead to SLO violations.
The strategy iteratively checks resources that can be reclaimed from higher layers, such as the
application and the guest OS, before considering lower layers like the hypervisor. The lower layer
is only checked if the reclamation at the previous layer is insufficient to recover the latency of the
LC service. However, since it takes time for new configurations to take effect, this conservative
strategy often leads to SLO violations. Considering the significant degradation in user experience
caused by Resource Deflation, we exclude it from the following experiments.

5.3.1 Servpod Analysis under Constant Load. Figures 21-23 demonstrate the effectiveness of
Rhythm’s reclamation technique in terms of Servpod-level improvements in BE throughput, CPU
utilization, and memory bandwidth utilization. Rhythm-CDC-BR, compared to Rhythm-CDC, achieves
further enhancements in BE throughput with average increases of 0.107, 0.153, 0.162, 0.112, and
0.091 on the five LC Servpods, respectively. While BE throughput tends to decrease as the access load
on the LC increases, Rhythm-CDC-BR exhibits increased improvements because the BE reclamation
strategy becomes more active under high load conditions. Notably, at 85% of the maximum load,
Rhythm-CDC-BR achieves a 0.193 increase in BE throughput for the co-located Zookeeper service.
This result is attributed to Zookeeper’s low contribution rate of 0.075, which leads to the reclamation
of only one BE at a time during StopBE or CutBE operations. In contrast, Kibana/ES maintains three
BEs in each MLRQ level due to its high contribution rate of 0.32. Alongside the improvements in
BE throughput, Rhythm-CDC-BR also demonstrates average increases of 9%, 11.3%, 10.7%, 12.7%,
and 8.7% in CPU utilization, as well as average increases of 11.4%, 12.6%, 10.3%, 8.8%, and 9.3% in
system memory bandwidth utilization compared to Rhythm-CDC.

5.3.2 Overall Performance under Constant load. Figures 24-26 illustrate the overall performance
improvements achieved by BE-distinguishable reclamation in Rhythm-CDC-BR. The results demon-
strate that Rhythm-CDC-BR effectively enhances system throughput and resource utilization. When
the load is low, the LC service experiences fewer SLO violations, and the improvements brought by

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:26 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

(a) Tomcat/E-com

5 25 45 65 85
% of max load

0

20

40

60

80

M
em

B
W

 u
til

. (
%

)

Rhythm-CDC
Rhythm-CDC-BR

(b) Slave/Redis

5 25 45 65 85
% of max load

(c) Zookeeper/Solr

5 25 45 65 85
% of max load

(d) Memcached/Elgg

5 25 45 65 85
% of max load

(e) Kibana/ES

5 25 45 65 85
% of max load

Fig. 23. The memory bandwidth utilization at Servpods under different loads.

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(a) E-commerce

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(b) Redis

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)
Rhythm-CDC

Rhythm-CDC-BR

(c) Solr

5 25 45 65 85

% of max load

0
0.2
0.4
0.6
0.8

1
1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(d) Elgg

5 25 45 65 85

% of max load

0.2

0.4

0.6

0.8

1

1.2

E
M

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(e) Elasticsearch

Fig. 24. The EMU improvements under different loads.

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(a) E-commerce

5 25 45 65 85

% of max load

20

30

40

50

60

70

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(b) Redis

5 25 45 65 85

% of max load

20
30
40
50
60
70
80

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(c) Solr

5 25 45 65 85

% of max load

0

20

40

60

80

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(d) Elgg

5 25 45 65 85

% of max load

20

30

40

50

60

C
P

U
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(e) Elasticsearch

Fig. 25. The CPU utilization improvements under different loads.

5 25 45 65 85

% of max load

0

20

40

60

M
e

B
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(a) E-commerce

5 25 45 65 85

% of max load

10

20

30

40

50

60

M
e

B
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(b) Redis

5 25 45 65 85

% of max load

10

20

30

40

50

60

M
e

B
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(c) Solr

5 25 45 65 85

% of max load

0

20

40

60

M
e

B
(%

)

Rhythm-CDC

Rhythm-CDC-BR

(d) Elgg

5 25 45 65 85

% of max load

10

20

30

40

50

60

M
e

B
(%

)
Rhythm-CDC

Rhythm-CDC-BR

(e) Elasticsearch

Fig. 26. The memory bandwidth utilization improvements under different loads.

Rhythm-CDC-BR are less apparent. However, as the load increases, more CutBE and StopBE opera-
tions are executed. At this point, the BE-reclamation strategy significantly reduces preemption
losses, thereby enhancing resource utilization and throughput.

For instance, at 85% load for the Zookeeper service, Rhythm-CDC triggers a total of 11 CutBE and
8 StopBE operations to protect latency SLOs for the Solr service. Enabling the BE-distinguishable
reclamation technique leads to smoother preemption of BE tasks. Although this may result in more
CutBE/StopBE operations, the number of stopped BE tasks decreases from 17 to 9 (as a StopBE
operation can terminate multiple tasks), reducing throughput loss by approximately 50%. Notably,
Rhythm-CDC-BR achieves further improvements of 11.4%, 13.7%, 17.4%, 10.7%, and 16.1% in EMU
for E-commerce, Redis, Solr, Elgg, and Elasticsearch, respectively. Regarding resource utilization,
Figure 25 demonstrates that Rhythm-CDC-BR increases average CPU utilization by an additional
9.4%, 11.2%, 12.7%, 10.8%, and 13.8%. Figure 26 shows that Rhythm-CDC-BR further enhances memory
bandwidth utilization by 9.1%, 14.6%, 10.1%, 9.8%, and 11.4% for the respective services.

5.3.3 Overall Performance under Production Load. Figure 27 demonstrates the improvements in
resource utilization and SLO guarantee achieved by Rhythm-CDC-BR using the production load
of Clarknet [19]. It is observed that Rhythm-CDC provides a better SLO guarantee, as shown in
Figure 27d, due to its non-discriminatory reclamation strategy for BEs. However, this also results

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:27

EC Redis Solr Elgg ES
20

40

60

80

100

120

E
M

U
 (

%
)

Rhythm-CDC

Improvements

(a) EMU (%)

EC Redis Solr Elgg ES
20

40

60

80

C
P

U
 U

ti
l.
(%

)

Rhythm-CDC

Improvements

(b) CPU Utilization (%)

EC Redis Solr Elgg ES
20

40

60

80

M
e

B
 U

ti
l.
(%

)

Rhythm-CDC

Improvements

(c) MemBW Utilizaiton (%)

EC Redis Solr Elgg ES
0.4

0.6

0.8

1

N
o

rm
a

liz
e

d

Rhythm-CDC

Improvements

(d) 99%ile/SLO
Fig. 27. The average performance improvements by Rhythm-CDC-BR on EMU (a), CPU utilization (b), and
MemBw utilizaiton (c) under production load. (d) represents the 99𝑡ℎ percentile latency normalized to the
latency stated in SLO. (EC: E-commerce, ES: Elasticsearch)

in a lower resource utilization rate for Rhythm-CDC over an extended period. Under the produc-
tion load, Rhythm-CDC-BR significantly increases EMU, CPU utilization, and memory bandwidth
utilization by 17.7%, 14.5%, and 19.6%, respectively (Figure 27a-27c). In summary, compared to
Heracles, Rhythm-CDC-BR, which incorporates both component-distinguishable co-location and
BE-distinguishable reclamation, improves the average system throughput by 47.3%, CPU utilization
by 38.6%, and memory bandwidth utilization by 45.4%.

5.4 Running with Microservice
Rhythm demonstrates its effectiveness in managing processes, containers, or microservices. In
this section, we evaluate its efficiency using two representative microservice benchmarks from
DeathStarBench [32]: SNMS (social network in microservice) and HR (hotel reservation). SNMS
consists of 30 unique microservices that communicate through RPC (Remote Procedure Call).
These microservices are divided into three Servpods: media service (13 microservices for media data
processing), frontend (3 microservices including nginx-thrift, media-frontend, and jaeger), and user
service (14 microservices for user operations). Similarly, HR consists of 19 unique microservices,
grouped into three Servpods: frontend (3 microservices), reservation (7 microservices related to the
reservation process), and data service (9 microservices for data storage and processing). Each Servpod
is allocated 20 CPU cores and 64 GB of memory, and they are deployed in a distributed manner. For
the evaluation of these microservice benchmarks, Rhythm does not require its own request tracer.
Instead, the benchmarks support a built-in jaeger [41], which is a distributed tracing system similar
to Dapper [79]. Jaeger can record the sojourn time of each request at each microservice, providing
the necessary data for analysis and evaluation.
Figure 28 shows the overall performance evaluation results. Since the contributions of the

three Servpods are 0.295, 0.14, and 0.565, respectively, and their slackLimits are 0.189, 0.054, and
0.381, respectively, the improvements mainly benefit from the media service and frontend Servpods.
Compared with Heracles, Rhythm achieves an average improvement of 14.3%, 30.2%, and 45.8% in
the EMU, CPU utilization, and memory bandwidth utilization, respectively. In particular, Rhythm
achieves an EMU improvement of 23.27% in the wordcount group because wordcount performs
many computations and IO operations, which affects the tail latency significantly. The sciMark
group also shows the best improvements in CPU utilization, but the least in memory bandwidth
utilization for the same reason as in previous experiments.
Figure 29 presents a comprehensive performance comparison among Heracles, Rhythm-CDC,

and Rhythm-CDC-BR when co-locating HR (hotel reservation) with BE tasks. The results show
that Rhythm-CDC launches more BEs compared to Heracles, resulting in a significant improvement
in CPU utilization and memory bandwidth utilization by 35.7% and 56.7% respectively. Further-
more, Rhythm-CDC-BR enhances system efficiency even further, with a notable increase in CPU

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:28 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

stream-llc

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

E
M

U

stream-dram

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
LSTM

20 40 60 80 100
0

0.3

0.6

0.9

1.2
CPU-stress

20 40 60 80 100
0

0.3

0.6

0.9

1.2
imageClassify

20 40 60 80 100
0

0.3

0.6

0.9

1.2
wordcount

20 40 60 80 100
0

0.3

0.6

0.9

1.2

stream-llc

20 40 60 80 100
0

10

20

30

40

50

C
P

U
 U

ti
l.
 (

%
)

stream-dram

20 40 60 80 100
0

10

20

30

40

50
LSTM

20 40 60 80 100
0

15

30

45

60
CPU-stress

20 40 60 80 100
0

20

40

60

80
imageClassify

20 40 60 80 100
0

15

30

45

60
wordcount

20 40 60 80 100
0

10

20

30

40

50

stream-llc

20 40 60 80 100
0

20

40

60

80

100

M
e
B

 U
ti
l.
 (

%
)

stream-dram

20 40 60 80 100
0

20

40

60

80

100
LSTM

20 40 60 80 100

% of max load

0

5

10

15

20

25
CPU-stress

20 40 60 80 100
0

5

10

15

20
imageClassify

20 40 60 80 100
0

20

40

60

80
wordcount

20 40 60 80 100
0

20

40

60

80

Fig. 28. Performance comparison when running with SNMS microservice. Improvements are color-coded as
follows: - represents the EMU or resource utilization of LC itself; - represents the improvements achieved
by Heracles; - represents the further improvements achieved by Rhythm.

Colocation strategies
0

20

40

60

80

100

C
P

U
 u

ti
l.
 (

%
)

Heracles

Rhythm-CDC

Rhythm-CDC-BR

43.4

58.9

69.1

(a) CPU utilization

Colocation strategies
0

20

40

60

80

100

M
e
m

B
W

 u
ti
l.
 (

%
)

61.9

73.1

39.5

(b) Memory bandwidth

Colocation strategies
1

1.1

1.2

1.3

1.4
E

M
U

1.34

1.13

1.25

(c) EMU
Fig. 29. Performance evaluation when running with hotel reservation microservice.

utilization, memory bandwidth utilization, and EMU by approximately 17.3%, 18.4%, and 7.2% respec-
tively. These findings demonstrate the effectiveness of the component-distinguishable co-location
mechanism and the BE-distinguishable reclamation technique in scenarios involving multiple
microservices with varying workload behaviors and resource dependencies in each component.

5.5 Example of Running Process
Figure 30 illustrates the timeline of Rhythm’s operation on two Servpods (Index and Kibana) of
Elasticsearch when they are co-located with 20 BEs under the production load. Initially, Rhythm
allows the BE workload to grow as there is sufficient slack between the actual latency and the
SLO target. This results in continuous increases in BE throughput, BE instances, BE cores, BE
LLC, and CPU utilization. At time 5, Rhythm triggers the SuspendBE operation because the request
load exceeds the loadlimit. As a result, even though the allocated resources for the BE jobs remain
unchanged, CPU utilization rapidly decreases, and the BE throughput stops increasing. During the
SuspendBE period, the memory occupied by the BE may still cause SLO violations, leading to the
activation of the StopBE operation. At time 6.2, when the request load drops below the loadlimit, the
BE jobs resume their growth until time 7.1. However, a sudden decrease in slack prompts Rhythm to
initiate the StopBE operation. During this operation, Rhythm selects the BEs with fewer preemption
losses for reclamation. Since the Index Servpod has a higher contribution rate than Kibana, three
BEs co-located with Index are reclaimed. At time 12, the CutBE operation is triggered. Although

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:29

0.25

0.5

0.75

1

L
o
a

d

Load LoadLimit

-0.4
0

0.4
0.8

S
la

c
k

Slack SlackLimit

0
3
6
9

12
15

B
E

 I
n

s
t.

ES-Index ES-Kibana

0

40

80

C
P

U
(%

) ES-Index ES-Kibana

0
6

12
18
24

B
E

 C
o
re

s ES-Index ES-Kibana
0

4

8

B
E

 L
L

C

ES-Index ES-Kibana

0 5 6.2 7.1 12 20 25 30

Timeline (min)

0
0.2
0.4
0.6
0.8

1

B
E

 T
h
ro

u
g
h
p
u
t ES-Index ES-Kibana

Fig. 30. The timeline of Rhythm’s running process.

the number of BE instances remains unchanged, their LLC and core allocations are reduced. This
operation helps optimize resource allocation and management in the system.

5.6 Loadlimit and Slacklimit Analysis
We also evaluate the impact of loadlimit and slacklimit on the BE throughput. By fixing the slacklimit
and loadlimit of HAProxy, Tomcat, Amoeba, but varying the ones of MySQL, Figure 31 shows how
the BE throughput varies over the loadlimit and slacklimit. We see that the BE throughput peaks
when the loadlimit is at the 90% level (i.e., 90% of the actual derived values). In the case of "fixing
loadlimit, varying slacklimit", the BE throughput at the 80% and 90% levels are both higher than
that at the 100% level. However, Table 2 shows that setting the slacklimit at 90% also causes 13 SLO
violations and kills 3 BE jobs in the period. For loadlimit, the number of SLO violations and BE kills
at the 90% level is the same as that at the 100% level, indicating that the 90% level is a better choice.

70% 80% 90% 100% 110% 120% 130%

Threshold Setting

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

liz
e

d
 B

E
 T

h
ro

u
g

h
p

u
t

Fixing loadlimit=0.76, varying slacklimit

Fixing slacklimit=0.347, varying loadlimit

Fig. 31. Trade-off between loadlimit (slacklimit) and BE throughput.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:30 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

Table 2. SLO violations and BE kills when varing the loadlimit (slacklimit).

Fixed Loadlimit=0.76 Fixed Slacklimit=0.347
Level Slacklimit SLO Violation BE kills Loadlimit SLO violation BE kills

70% 0.243 22 7 0.532 0 0
80% 0.278 16 5 0.608 0 0
90% 0.312 13 3 0.684 0 0
100% 0.347 0 0 0.760 0 0
110% 0.382 0 0 0.836 12 5
120% 0.416 0 0 0.912 14 8
130% 0.451 0 0 - - -

6 RELATEDWORK
Request Tracer: Tracking the service path of a request has been extensively studied in earlier work.
They can be classified into two categories: execution tracing and communication tracing. Execution
tracing [5, 11, 18, 30, 43, 75, 79, 86, 93, 108] records the low-level system events (e.g., system calls) or
log messages generated during execution, and identifies the request path through pairing analysis.
Communication tracing [6, 10, 15, 17] discovers the dependency between components by analyzing
the network traffic. While the communication tracing cannot identify the intraServpod causality
easily, we choose the execution tracing, which is further implemented through either the intrusive
method [11, 30, 43, 79, 86, 108] or the non-intrusive method [5, 18, 40, 52, 75, 93]. As the intrusive
method causes high instrumentation cost, we simply use the easy-to-use systemTap [40] for deriving
the mean sojourn time of each request at each Servpod.
Interference analysis: A significant body of work has studied the interference in cloud computing
systems. The studies show that the performance of cloud services varies significantly due to multiple
reasons [12, 38, 76], including hardware heterogeneity [67], virtualization [89], or the contention
on various resources [44, 72, 80]. In particular, contention on cache [20, 34, 58, 83] and I/O [80] are
two main sources for performance interference. These contentions are not only from the same
core [97, 100] but also possibly from cross-cores [102, 103]. However, these works mainly focus on
the evaluation of the overall performance of an application, e.g., the latency of a web application
[72], a multimedia service [12], or the execution time of a bigdata analysis job [26]. They never
study the performance variation of any one of Servpods under interference, while most applications
consist of multiple Servpods.
Profiling-based QoS management: Given the precisely characterized interference features of
cloud services, previous work can guarantee QoS through interference-aware QoS management.
For example, Bubble-Up [60] and Bubble-Flux [96] predict the impact of interference from potential
corunners through the instantaneous pressure generated by a dynamic bubble. DeepDive [65] infers
performance loss due to interference by clustering low-level metrics. Dirigent [106] and Wrangler
[95] supports to control QoS based on the prediction of execution time. Stay-away [73] throttles the
batch jobs to avoid contention by predicting any progression towards a QoS violation at runtime.
SMiTe [101] achieves precise interference prediction on real-system architectures. Quasar [25]
and Paragon [24] use classification techniques to quickly estimate the impact of interference, and
improve resource utilization while guaranteeing QoS. Pythia [94] predicts the combined contention
of multiple applications using a simple linear regression model to improve utilization. Harvest VM
[7] only considers the unallocated resources in cluster. It characterizes the time-varying features of
unallocated resources and proposes to leverage them for more workloads. These approaches rely
on accurate prediction models, which may be costly in practice.
Other related work like Ubik [46], CQoS [39], CPI2 [99], iAware [92] and [42] present how to

guarantee the QoS with cache or memory bandwidth isolation mechanisms. For core isolation,

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:31

PerfIso [37] co-locates batch jobs with production latency-sensitive services using CPU binding
isolation to protect SLO from burst workloads. Retro [55] presents resource management framework
to improve efficiency using these isolation mechanisms.
Feedback-based QoS management: Although the interference-aware QoS management works
well in many scenarios, it’s impossible to characterize the interference behaviors of all applications.
Moreover, it is hard to achieve zero error on interference predictions. Hence, another approach for
improving the resource utilization is using the feedback-basedmethod, that is, response immediately
after a possible SLO violation is detected. ICE [56] works in the application layer, and it improves the
web server performance during interference by reconfiguring the balancer andmiddleware to reduce
the load on the impacted server. In the system layer, Q-Clouds [63] uses online feedback to capture
interference, and tunes resource allocations to mitigate performance interference effects. Heracles
[51] enables the safe co-location of BE jobs and LC service through a conservative thresholding
method. PARTIES [16] and CLITE [70] further increases the number of co-scheduled LC services
per server to improve the throughput. CoPart [69] analyzes the characteristics of workloads and
allocates the LLC and memory bandwidth for BE jobs to improve fairness. Twig [64] employs a deep
reinforcement learning model for improving the energy-efficiency of co-located latency-critical
services. Resource deflation[77] extends to dynamically shrink resource allocation in response to
resource pressure, instead of being preempted outright. It helps to reduce the useless computation
yielded by preempted BEs, but cannot guarantee SLO well. The feedback-based method may cause
oscillations in the control loop especially when the tail latency is unstable. While the use of loadlimit
can reduce such oscillations, we can also mitigate this problem by introducing buffer resources,
like in PerfIso [37].

GrandSLAm [45] is another work considering the different characteristics of each service compo-
nent. It enables consolidated execution of requests belonging tomultiple jobs in amicroservice-based
computing framework. There are four differences between Rhythm and GrandSLAm: (1) Grand-
SLAm co-locates multiple LCs, while Rhythm co-locates an LC and multiple BEs. (2) GrandSLAm is
effective when multiple LCs share microservices, while Rhythm is also effective when LC has no
shared microservices with BEs. (3) The execution time of each microservice is highly predictable in
GrandSLAm given the batch size at each microservice, while it is difficult to predict the execution
time in each Servpod due to the uncertain interference. (4) GrandSLAm uses the end-to-end latency
in SLO, while Rhythm considers the tail latency, which is a statistical result over all latencies. Hence,
GrandSLAm is orthogonal to Rhythm.

7 DISCUSSION
Application Scenarios: Rhythm can be adopted in the private Infrastructure-as-a-Service (IaaS)
cloud or public serverless computing. Serverless computing is essentially a Platform-as-a-Service
(PaaS) where the user’s application is split into multiple stateless functions, and the user only
needs to focus on their business code. In serverless, cloud providers offer runtime environments for
tenant functions, expanding the system’s scope of control compared to IaaS. Function execution
times and even the end-to-end latency of a workflow can be easily measured at the cloud provider
side, giving serverless computing an inherent advantage for integrating Rhythm.
The deployment of Rhythm in the serverless computing scenario is similar to the one in the

microservices scenario. Rhythm’s subcontrollers can be deployed within each server to manage
local functions. In particular, functions located in the same physical server can also be grouped as a
Servpod, while latency-insensitive functions can be treated as BE tasks. Note that Rhythm’s control
algorithm incurs low overhead and is scalable with the function scales in a serverless platform.
This enables Rhythm to be highly adaptive in serverless computing.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:32 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

Co-location in multi-LC scenarios: The current Rhythm can only support the co-location of a
Servpod with multiple BEs. It is possible that multiple Servpods from different LCs are deployed in
the same machine. In this case, Rhythm can be combined with existing methods such as CLITE[70]
and Twig [64] to address the problem. Specifically, we can employ the methods in CLITE or Twig to
address the service-level workload co-location challenge among different LCs. In addition, Rhythm’s
component-level workload collocation approach can be used to achieve finer-grained resource
management and SLO guarantees within each LC.

8 CONCLUSIONS
In this paper, we present Rhythm, a system that manages resource allocation between LC service
and BE jobs in the profiling-feedback hybrid way. Rhythm allows the aggressive deployment of
BE jobs on machines contributing less to tail latency based on Servpod-level control. Rhythm also
adopts a BE-distinguishable reclamation scheme that reduces the useless computation yielded by
BE reclamation under SLO violations. We evaluate Rhythm with typical LC services and BE jobs
under different load scenarios, and find it can improve the resource efficiency significantly. Rhythm
can be deployed easily in a private cloud, where we can conduct deep analysis on LC services. The
characterization cost is low, as (1) it only relies on the LC service itself, (2) the request tracing and
performance monitoring have always been an important component in the cloud, even without
deploying Rhythm.
In the future, we would like to further improve system resource efficiency through co-locating

multi-tenant LCs and BEs. For the public cloud where we know little about the LC service, we
will explore the design space of co-locations using the evolved software and hardware isolation
mechanisms.

ACKNOWLEDGMENTS
Thiswork is supported by theNational Key Research andDevelopment Program of ChinaNo.2022YFB
4500702; project ZR2022LZH018 supported by Shandong Provincial Natural Science Foundation;
the National Natural Science Foundation of China under grant 62141218, 62372322 and the open
project of Zhejiang Lab (2021DA0AM01/003).

REFERENCES
[1] 2020. https://parsec.cs.princeton.edu/.
[2] 2020. Scimark:A benchmark for scientific and numerical computing. https://openbenchmarking.org/test/pts/scimark2-

1.3.2.
[3] 2020. The SPEC Cloud IaaS 2018 benchmark is SPEC’s second benchmark suite to measure cloud performance.

https://www.spec.org/.
[4] 2020. Tensorflow-Bench: A benchmark framework for TensorFlow. https://github.com/tensorflow/benchmarks.
[5] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham. 2007. E2EProf: Automated End-to-End Performance

Management for Enterprise Systems. In The 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07). 749–758.

[6] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthitacharoen. 2003. Per-
formance Debugging for Distributed Systems of Black Boxes. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (Bolton Landing, NY, USA) (SOSP ’03). Association for Computing Machinery, New York,
NY, USA, 74–89.

[7] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, KeWang, Brian Dolan, Brian Corell, Sekhar Pasupuleti, Thomas
Moscibroda, Sameh Elnikety, Marcus Fontoura, and Ricardo Bianchini. 2020. Providing SLOs for Resource-Harvesting
VMs in Cloud Platforms. USENIX Association, USA.

[8] Javed A. Aslam and Mark Montague. 2001. Models for Metasearch. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (New Orleans, Louisiana, USA) (SIGIR
’01). Association for Computing Machinery, New York, NY, USA, 276–284.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:33

[9] Javed A. Aslam and Mark H. Montague. 2001. Models for Metasearch. In SIGIR 2001: Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, September 9-13, 2001, New
Orleans, Louisiana, USA, W. Bruce Croft, David J. Harper, Donald H. Kraft, and Justin Zobel (Eds.). ACM, 275–284.

[10] Paul Barham, Richard Black, Moises Goldszmidt, Rebecca Isaacs, John MacCormick, Richard Mortier, and Aleksandr
Simma. 2008. Constellation: automated discovery of service and host dependencies in networked systems. Technical
Report MSR-TR-2008-67. 1–14 pages.

[11] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using Magpie for request extraction and
workload modelling. In Proceedings of the Sixth USENIX Symposium on Operating Systems Design and Implementation
(OSDI) 2004 (proceedings of the sixth usenix symposium on operating systems design and implementation (osdi) 2004
ed.). 259–272.

[12] Sean Kenneth Barker and Prashant Shenoy. 2010. Empirical Evaluation of Latency-sensitive Application Performance
in the Cloud. In Proceedings of the First Annual ACM SIGMM Conference on Multimedia Systems (Phoenix, Arizona,
USA) (MMSys ’10). ACM, New York, NY, USA, 35–46.

[13] Anne Benoit, Mourad Hakem, and Yves Robert. 2008. Fault tolerant scheduling of precedence task graphs on
heterogeneous platforms. In 2008 IEEE International Symposium on Parallel and Distributed Processing. 1–8.

[14] Anne Benoit, Mourad Hakem, and Yves Robert. 2009. Contention awareness and fault-tolerant scheduling for
precedence constrained tasks in heterogeneous systems. Parallel Comput. 35, 2 (2009), 83–108.

[15] P. Chen, Y. Qi, and D. Hou. 2019. CauseInfer: Automated End-to-End Performance Diagnosis with Hierarchical
Causality Graph in Cloud Environment. IEEE Transactions on Services Computing 12, 2 (March 2019), 214–230.

[16] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PARTIES: QoS-Aware Resource Partitioning for
Multiple Interactive Services. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA,
107–120.

[17] Xu Chen, Ming Zhang, Z. Morley Mao, and Paramvir Bahl. 2008. Automating Network Application Dependency
Discovery: Experiences, Limitations, and New Solutions. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (San Diego, California) (OSDI’08). USENIX Association, USA, 117–130.

[18] MIchael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch. 2014. The Mystery Machine:
End-to-end Performance Analysis of Large-scale Internet Services. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 217–231.

[19] The Internet Traffic Archive ClarkNet. 2017. http://ita.ee.lbl.gov/html/traces.html.
[20] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A Patterson, and Krste Asanovic. 2013. A hardware

evaluation of cache partitioning to improve utilization and energy-efficiency while preserving responsiveness. In
ACM SIGARCH Computer Architecture News, Vol. 41. ACM, 308–319.

[21] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56, 2 (Feb. 2013), 74–80.
[22] DeathStarBench. 2019. https://github.com/delimitrou/DeathStarBench.
[23] Christina Delimitrou and Christos Kozyrakis. 2013. ibench: Quantifying interference for datacenter applications. In

2013 IEEE international symposium on workload characterization (IISWC). IEEE, 23–33.
[24] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous datacenters.

In ACM SIGPLAN Notices, Vol. 48. ACM, 77–88.
[25] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient and QoS-aware cluster management.

ACM SIGPLAN Notices 49, 4 (2014), 127–144.
[26] Christina Delimitrou and Christos Kozyrakis. 2016. HCloud: Resource-Efficient Provisioning in Shared Cloud Systems.

SIGPLAN Not. 51, 4 (March 2016), 473–488.
[27] Elasticsearch. 2021. Elasticsearch: a search engine based on the Lucene library. https://lucene.apache.org/solr/.
[28] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A Survey of Rollback-Recovery

Protocols in Message-Passing Systems. ACM Comput. Surv. 34, 3 (Sept. 2002), 375–408.
[29] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu

Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of
Emerging Scale-out Workloads on Modern Hardware. SIGPLAN Not. 47, 4 (March 2012), 37–48.

[30] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker. 2007. X-Trace: A Pervasive Network Tracing
Framework. In 4th USENIX Symposium on Networked Systems Design & Implementation (NSDI 07). USENIX Association,
Cambridge, MA.

[31] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications of Cloud Microservices. IEEE Computer
Architecture Letters 17, 2 (July 2018), 155–158.

[32] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian
Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine
Leung, SiyuanWang, Leon Zaruvinsky,Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:34 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

2019. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud &
Edge Systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 3–18.

[33] Alexander N. Gorban, Lyudmila I. Pokidysheva, Elena V. Smirnova, and Tatiana A. Tyukina. 2011. Law of the Minimum
Paradoxes. Bulletin of Mathematical Biology 73 (2011), 2013–2044.

[34] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. 2011. Cuanta: Quantifying Effects of Shared
On-chip Resource Interference for Consolidated Virtual Machines. In Proceedings of the 2Nd ACM Symposium on
Cloud Computing (Cascais, Portugal) (SOCC ’11). ACM, New York, NY, USA, 22:1–22:14.

[35] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. 2019. Who Limits the
Resource Efficiency of My Datacenter: An Analysis of Alibaba Datacenter Traces. In Proceedings of the International
Symposium on Quality of Service (Phoenix, Arizona) (IWQoS ’19). ACM, New York, NY, USA, Article 39, 10 pages.

[36] HiBench. 2020. HiBench: HiBench is a big data benchmark suite that helps evaluate different big data frameworks in
terms of speed, throughput and system resource utilizations. https://github.com/Intel-bigdata/HiBench.

[37] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala, Vivek Narasayya, Herodotos
Herodotou, Paulo Tomita, Alex Chen, Jack Zhang, and Junhua Wang. 2018. PerfIso: Performance Isolation for
Commercial Latency-Sensitive Services. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 519–532.

[38] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. 2011. On the Performance Variability of Production Cloud Services.
In 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 104–113.

[39] Ravi R. Iyer. 2004. CQoS: a framework for enabling QoS in shared caches of CMP platforms. In International Conference
on Supercomputing. 257–266.

[40] Bart Jacob, Paul Larson, B Leitao, and SAMMDa Silva. 2008. SystemTap: instrumenting the Linux kernel for analyzing
performance and functional problems. IBM Redbook (2008).

[41] jaeger. 2019. https://www.jaegertracing.io/.
[42] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. 2012. A QoS-aware memory controller for dynamically balancing

GPU and CPU bandwidth use in an MPSoC. In DAC Design Automation Conference 2012. 850–855.
[43] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong, Bill

Schaller, Pingjia Shan, Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017.
Canopy: An End-to-End Performance Tracing And Analysis System. In Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, October 28-31, 2017. ACM, 34–50.

[44] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. 2012. Measuring interference between live datacenter applications.
In High PERFORMANCE Computing, Networking, Storage and Analysis. 1–12.

[45] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang. 2019.
GrandSLAm: Guaranteeing SLAs for Jobs in Microservices Execution Frameworks. In Proceedings of the Fourteenth
EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing Machinery, New York, NY,
USA, Article 34, 16 pages.

[46] Harshad Kasture and Daniel Sanchez. 2014. Ubik: efficient cache sharing with strict qos for latency-critical workloads.
In ACM SIGPLAN Notices, Vol. 49. ACM, 729–742.

[47] Darja Krushevskaja and Mark Sandler. 2013. Understanding latency variations of black box services. In Proceedings of
the 22nd international conference on World Wide Web. ACM, 703–714.

[48] Kubernetes. 2019. https://kubernetes.io/.
[49] Wenyu Qu Kunlin Zhan Laiping Zhao, Fangshu Li and Qingman Zhang. 2021. AITurbo: Unified Compute Allocation

for Partial Predictable Training in Commodity Clusters. In Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’21). ACM, USA.

[50] Qixiao Liu and Zhibin Yu. 2018. The Elasticity and Plasticity in Semi-Containerized Co-locating Cloud Workload: A
View from Alibaba Trace. In Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18).
ACM, New York, NY, USA, 347–360.

[51] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. 2015. Heracles:
Improving resource efficiency at scale. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450–462.

[52] LTTng. 2019. https://lttng.org/.
[53] Piotr Luszczek, Jack J Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas, Jeremy Kepner, John McCalpin, David

Bailey, and Daisuke Takahashi. [n.d.]. Introduction to the HPC Challenge Benchmark Suite. ([n. d.]).
[54] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni Xu, Zhicheng Yao, Yun Chen, Haibin

Wang, Lixin Zhang, and Yungang Bao. 2015. Supporting Differentiated Services in Computers via Programmable
Architecture for Resourcing-on-Demand (PARD). SIGARCH Comput. Archit. News 43, 1 (March 2015), 131–143.

[55] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015. Retro: Targeted Resource Management
in Multi-tenant Distributed Systems. In 12th USENIX Symposium on Networked Systems Design and Implementation

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:35

(NSDI 15). USENIX Association, Oakland, CA, 589–603.
[56] A. K. Maji, S. Mitra, and S. Bagchi. 2015. ICE: An Integrated Configuration Engine for Interference Mitigation in

Cloud Services. In 2015 IEEE International Conference on Autonomic Computing. 91–100.
[57] Haroon Malik, Hadi Hemmati, and Ahmed E Hassan. 2013. Automatic detection of performance deviations in the

load testing of large scale systems. In Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 1012–1021.

[58] Raman Manikantan, Kaushik Rajan, and Ramaswamy Govindarajan. 2012. Probabilistic shared cache management
(PriSM). In Computer Architecture (ISCA), 2012 39th Annual International Symposium on. IEEE, 428–439.

[59] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. 2011. Bubble-up: Increasing utilization in
modern warehouse scale computers via sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 248–259.

[60] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. 2011. Bubble-Up: Increasing Utilization
in Modern Warehouse Scale Computers via Sensible Co-locations. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (Porto Alegre, Brazil) (MICRO-44). ACM, New York, NY, USA, 248–259.

[61] Peter Mattson, Christine Cheng, Gregory F. Diamos, Cody Coleman, Paulius Micikevicius, David A. Patterson,
Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim M.
Hazelwood, Andy Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan,
Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean
Wu, Lingjie Xu, Cliff Young, and Matei Zaharia. 2020. MLPerf Training Benchmark. In Proceedings of Machine Learning
and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020, Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and
Vivienne Sze (Eds.). mlsys.org.

[62] D. A. Menasce. 2002. TPC-W: A Benchmark for E-Commerce. IEEE Internet Computing 6 (05 2002), 83–87.
[63] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds: managing performance interference effects for

qos-aware clouds. In Proceedings of the 5th European conference on Computer systems. ACM, 237–250.
[64] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Sjalander. 2020. Twig : Multi-Agent Task Management

for Colocated Latency-Critical Cloud Services. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 167–179.

[65] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic, and Ricardo Bianchini. 2013. DeepDive: Transpar-
ently Identifying and Managing Performance Interference in Virtualized Environments. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference (San Jose, CA) (USENIX ATC’13). USENIX Association, Berkeley,
CA, USA, 219–230.

[66] Numactl. 2019. https://github.com/numactl/numactl.
[67] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and Pan Hui. 2012. Exploiting Hardware

Heterogeneity Within the Same Instance Type of Amazon EC2. In Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Ccomputing (Boston, MA) (HotCloud’12). USENIX Association, Berkeley, CA, USA, 4–4.

[68] Ioannis Papadakis, Konstantinos Nikas, Vasileios Karakostas, Georgios Goumas, and Nectarios Koziris. 2017. Improving
QoS and Utilisation in modern multi-core servers with Dynamic Cache Partitioning. In Proceedings of the Joined
Workshops COSH 2017 and VisorHPC 2017, Carsten Clauss, Stefan Lankes, Carsten Trinitis, and Josef Weidendorfer
(Eds.). Stockholm, Sweden, 21–26.

[69] Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Coordinated Partitioning of Last-Level Cache
and Memory Bandwidth for Fairness-Aware Workload Consolidation on Commodity Servers. In Proceedings of the
Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). ACM, New York, NY, USA, Article 10, 16 pages.

[70] Tirthak Patel and Devesh Tiwari. 2020. CLITE : Efficient and QoS-Aware Co-location of Multiple Latency-Critical Jobs
for Warehouse Scale Computers. In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 193–206.

[71] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018. Optimus: An Efficient Dynamic
Resource Scheduler for Deep Learning Clusters (EuroSys ’18). Association for Computing Machinery, New York, NY,
USA, Article 3, 14 pages.

[72] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and Calton Pu. 2010. Understanding Performance
Interference of I/O Workload in Virtualized Cloud Environments. In Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD ’10). IEEE Computer Society, Washington, DC, USA, 51–58.

[73] Navaneeth Rameshan, Leandro Navarro, Enric Monte, and Vladimir Vlassov. 2014. Stay-Away, Protecting Sensitive
Applications from Performance Interference. In Proceedings of the 15th International Middleware Conference (Bordeaux,
France) (Middleware ’14). ACM, New York, NY, USA, 301–312.

[74] Redis. 2019. Redis: an open source, in-memory data structure store. https://redis.io.
[75] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang, and Z. Jia. 2012. Precise, Scalable, and Online Request

Tracing for Multitier Services of Black Boxes. IEEE Transactions on Parallel and Distributed Systems 23, 6 (June 2012),

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:36 Laiping Zhao, Yushuai Cui, Yanan Yang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao

1159–1167.
[76] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Runtime Measurements in the Cloud: Observing,

Analyzing, and Reducing Variance. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 460–471.
[77] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. 2019. Resource Deflation: A New Approach For Transient

Resource Reclamation. In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19).
Association for Computing Machinery, New York, NY, USA, Article 33, 17 pages.

[78] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder. 2003. Discovering and Exploiting
Program Phases. IEEE Micro 23, 6 (Nov. 2003), 84–93.

[79] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,
and Chandan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report.
Google, Inc.

[80] S. Sivathanu, X. Pu, L. Liu, X. Dong, and Y. Mei. 2013. Performance Analysis of Network I/O Workloads in Virtualized
Data Centers. IEEE Transactions on Services Computing 6 (01 2013), 48–63.

[81] Solr. 2021. Solr is the popular, blazing-fast, open source enterprise search platform built on Apache Lucene.
https://solr.apache.org/.

[82] Spark-Bench. 2020. Spark-Bench: A Benchmark Suite for Apache Spark. https://github.com/codait/spark-bench.
[83] Shekhar Srikantaiah, Mahmut Kandemir, and Qian Wang. 2009. SHARP control: controlled shared cache management

in chip multiprocessors. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 517–528.

[84] Christopher Stewart and Kai Shen. 2005. Performance modeling and system management for multi-component online
services. In Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-Volume 2.
USENIX Association, 71–84.

[85] Fei Tang, Wanling Gao, Jianfeng Zhan, Chuanxin Lan, Xu Wen, Lei Wang, Chunjie Luo, Zheng Cao, Xingwang Xiong,
Zihan Jiang, Tianshu Hao, Fanda Fan, Fan Zhang, Yunyou Huang, Jianan Chen, Mengjia Du, Rui Ren, Chen Zheng,
Daoyi Zheng, Haoning Tang, Kunlin Zhan, Biao Wang, Defei Kong, Minghe Yu, Chongkang Tan, Huan Li, Xinhui
Tian, Yatao Li, Junchao Shao, Zhenyu Wang, Xiaoyu Wang, Jiahui Dai, and Hainan Ye. 2021. AIBench Training:
Balanced Industry-Standard AI Training Benchmarking. In IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2021, Stony Brook, NY, USA, March 28-30, 2021. 24–35.

[86] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez, and Gregory R.
Ganger. 2006. Stardust: Tracking Activity in a Distributed Storage System. SIGMETRICS Perform. Eval. Rev. 34, 1 (June
2006), 3–14.

[87] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter,
and John Wilkes. 2020. Borg: The next Generation. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New York, NY, USA, Article 30,
14 pages.

[88] A Tirumala, F Qin, J Dugan, J Ferguson, and K Gibbs. 2005. Iperf: The TCP/UDP bandwidth measurement tool.
http.dast.nlanr.net/Projects 38 (2005).

[89] Guohui Wang and T. S. Eugene Ng. 2010. The Impact of Virtualization on Network Performance of Amazon EC2
Data Center. In Proceedings of the 29th Conference on Information Communications (San Diego, California, USA)
(INFOCOM’10). IEEE Press, Piscataway, NJ, USA, 1163–1171.

[90] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling Gao, Zhen Jia, Yingjie
Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent Zhan, Xiaona Li, and Bizhu Qiu. 2014. BigDataBench: A big data
benchmark suite from internet services. In 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). 488–499.

[91] Fei Xu, Fangming Liu, and Hai Jin. 2016. Heterogeneity and Interference-Aware Virtual Machine Provisioning for
Predictable Performance in the Cloud. IEEE Trans. Comput. 65, 8 (2016), 2470–2483.

[92] Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li. 2014. iAware: Making Live Migration of Virtual
Machines Interference-Aware in the Cloud. IEEE Trans. Comput. 63, 12 (Dec. 2014), 3012–3025.

[93] H. Xu, X. Ning, H. Zhang, J. Rhee, and G. Jiang. 2016. PInfer: Learning to Infer Concurrent Request Paths from System
Kernel Events. In 2016 IEEE International Conference on Autonomic Computing (ICAC). 199–208.

[94] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg Bronevetsky, and Saurabh Bagchi. 2018. Pythia:
Improving Datacenter Utilization via Precise Contention Prediction for Multiple Co-located Workloads. In Proceedings
of the 19th International Middleware Conference (Rennes, France) (Middleware ’18). ACM, New York, NY, USA, 146–160.

[95] Neeraja J Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz. 2014. Wrangler: Predictable and faster jobs using
fewer resources. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1–14.

[96] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux: Precise Online QoS Management
for Increased Utilization in Warehouse Scale Computers. ACM SIGARCH Computer Architecture News 41, 3 (2013),

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing 111:37

607–618.
[97] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2016. Elfen Scheduling: Fine-Grain Principled Borrowing

from Latency-Critical Workloads Using Simultaneous Multithreading. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16). USENIX Association, Denver, CO, 309–322.

[98] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory
Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation
(San Jose, CA) (NSDI’12). USENIX Association, USA, 2.

[99] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and JohnWilkes. 2013. CPI 2: CPU performance
isolation for shared compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems. 379–
391.

[100] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. 2014. SMiTe: Precise QoS Prediction on Real-System SMT Processors
to Improve Utilization in Warehouse Scale Computers. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture. 406–418.

[101] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang. 2014. Smite: Precise qos prediction on real-system
smt processors to improve utilization in warehouse scale computers. In Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on. IEEE, 406–418.

[102] Jiacheng Zhao, Huimin Cui, Jingling Xue, and Xiaobing Feng. 2016. Predicting Cross-Core Performance Interference
on Multicore Processors with Regression Analysis. IEEE Trans. Parallel Distrib. Syst. 27, 5 (May 2016), 1443–1456.

[103] Jiacheng Zhao, Huimin Cui, Jingling Xue, Xiaobing Feng, Youliang Yan, and Wensen Yang. 2013. An Empirical Model
for Predicting Cross-core Performance Interference on Multicore Processors. In Proceedings of the 22Nd International
Conference on Parallel Architectures and Compilation Techniques (Edinburgh, Scotland, UK) (PACT ’13). IEEE Press,
Piscataway, NJ, USA, 201–212.

[104] Wenyi Zhao, Quan Chen, Hao Lin, Jianfeng Zhang, Jingwen Leng, Chao Li, Wenli Zheng, Li Li, and Minyi Guo.
2019. Themis: Predicting and Reining in Application-Level Slowdown on Spatial Multitasking GPUs. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 653–663.

[105] Qin Zheng, Bharadwaj Veeravalli, and Chen-Khong Tham. 2009. On the Design of Fault-Tolerant Scheduling Strategies
Using Primary-Backup Approach for Computational Grids with Low Replication Costs. IEEE Trans. Comput. 58, 3
(2009), 380–393.

[106] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for latency-critical tasks on shared multicore systems.
ACM SIGARCH Computer Architecture News 44, 2 (2016), 33–47.

[107] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks. In Proceedings of the IEEE international conference on computer vision. 2223–2232.

[108] Zipkin. 2019. https://zipkin.io/.

ACM Trans. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Inconsistent Interference Tolerance Ability
	2.2 Inconsistent Preemption Loss of BEs
	2.3 Implications

	3 Rhythm Design
	3.1 The Servpod Abstraction
	3.2 System Overview
	3.3 Request Tracer
	3.4 Contribution Analyzer
	3.5 Co-locating Controller
	3.6 BE Reclamation

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Component-distinguishable Co-location
	5.3 BE-distinguishable Reclamation
	5.4 Running with Microservice
	5.5 Example of Running Process
	5.6 Loadlimit and Slacklimit Analysis

	6 Related Work
	7 Discussion
	8 Conclusions
	Acknowledgments
	References

