
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Optimizing Geo-distributed Data Analytics with
Coordinated Task Scheduling and Routing

Laiping Zhao Yanan Yang Ali Munir Alex X. Liu Yue Li Wenyu Qu

Abstract—Recent trends show that cloud computing is growing to span more and more globally distributed datacenters. For geo-distributed
datacenters, there is an increasingly need for scheduling algorithms to place tasks across datacenters, by jointly considering WAN traffic and
computation. This scheduling must deal with situations such as wide-area distributed data, data sharing, WAN bandwidth costs and datacenter
capacity limits, while also minimizing makespan. However, this scheduling problem is NP-hard. We propose a new resource allocation algorithm
called HPS+, an extension to Hypergraph Partition-based Scheduling. HPS+models the combined task-data dependencies and data-datacenter
dependencies as an augmented hypergraph, and adopts an improved hypergraph partition technique to minimize WAN traffic. It further uses
a coordination mechanism to allocate network resources closely following the guidelines of task requirements, for minimizing the makespan.
Evaluation across the real China-Astronomy-Cloud model and Google datacenter model show that HPS+ saves the amount of data transfers by
upto 53% and reduces the makespan by 39% compared to existing algorithms.

Index Terms—Data Analytics, Task Scheduling, Routing, Geo-distributed Cloud
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1 Introduction
Emerging cloud applications (such as artificial intelligence
and data analytics) have many distributed components,
spread across many different locations, that work together
to achieve application goals. The distributed components of
these cloud applications often have diverse set of resource
requirements (such as CPU, RAM and network bandwidth),
which demand customized datacenter architectures. For
example, in scientific fields such as astronomy, telescopes
generate a lot of data that needs to be stored and pro-
cessed to extract useful information from the telescope data,
making these applications both data-intensive and compute-
intensive respectively. [1]. To efficiently store and quickly
process these large volumes of data, datacenters are built
close to the telescopes, forming a wide-area distributed
datacenter network, as these telescopes are distributed over
a large area. To this end, one such effort has been made by
the United States National Virtual Observatory and China
Virtual Observatory (China-VO) to provide cloud comput-
ing resources for processing astronomical applications [2].
Similarly, many online application service providers (such
as Google, facebook and Amazon) operate hundreds of
thousands of servers in multiple geographic locations, to
provide a variety of cloud services to their users [3].

The diverse resource requirements of cloud applications
and the geo-distributed datacenter architecture of cloud
systems raises several challenges for task scheduling and
routing in wide-area distributed datacenter networks.

For cloud application resource requirements, there are
four key challenges in task scheduling and routing. Firstly,
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the task scheduling and routing is challenging because
it is extremely expensive to process or transfer large
data volumes across multiple datacenters [4], [5]. The
explosive data growth is driving datacenters to manage
data storage scaling from terabyte (TB) to petabyte (PB).
For example, facebook currently handles 250PB of data
in their warehouse generated by thousands of machines
across multiple global regions and this data is increasing
at a rate of 600TB per day [6]. Besides, Large Synoptic
Survey Telescope (LSST) of the United States generates
a new image every 15 seconds, leading to a 30TB raw
image per night [7]. Second, the data is often derived
from geographically dispersed sources that include users,
devices, and sensors located around the globe. The distance
between tasks and their input data or the distance among
input data sets, makes data routing more complex. Third,
many tasks of the same applications often have shared
input data. Moreover, a data set could be accessed by
multiple tasks simultaneously. Therefore, the shared nature
of the datasets further complicates the task scheduling
and routing. Fourth, multiple data replicas are stored for
the same data over multiple datacenters to achieve higher
reliability. This complicates task scheduling because during
the data processing, applications need to select one of the
replicas as the input for the task.
For the geo-distributed cloud system, the task scheduling

and routing is complex and challenging because the task
scheduler has to not only deal with wide-area-network
(WAN) bandwidth cost, but also with the datacenter storage
and computing capability limits as well. Furthermore, the
limited WAN bandwidth makes the wide-area data transfer
very expensive [5]. Geo-distributed big data analytics can
provide fast and efficient data processing by providing
compute nodes close to the actual datasets, thus reducing
the network cost and latency. In such an architecture, for
an application consisting of a large number of tasks, each
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task is preferred to be scheduled on the datacenter storing
its input data, namely datacenter-level locality. However,
the limited computational capability of a datacenter cannot
meet the excessive demand of the increasing number of
tasks, especially when they are required to deliver full-
datacenter-level data locality. On the contrary, if multiple
tasks that share the same data sets are not assigned to the
same datacenter, these data sets might have to be transferred
multiple times across datacenters, leading to a large amount
of WAN traffic and hence higher network costs.

In this work, we design a task scheduling and routing
system called HPS+ for geographically distributed cloud
systems with a goal to minimize the makespan (i.e., task
completion time). The makespan of a task in large geo-
distributed systems depends on the data transfer time in
(or across) the network and the task execution time at
the compute node. If an application comprises a large
number of tasks, their makespan can vary considerably
depending on the data transfer time and the task execution
time. Moreover, due to the parallel nature of the tasks, the
makespan of a job is equal to the completion time of its
slowest task. Therefore, in order to minimize the makespan,
the scheduler in HPS+ considers all tasks of a job rather than
individual tasks in isolation.
HPS+ considers an integrated approach for jointly

scheduling the three major types of cloud resources (i.e.,
computation, data and network), compared to existing ap-
proaches that assume the computation process is agnostic
to network resources allocation. Therefore, to achieve its
goals, HPS+ first models the combined task-data depen-
dencies and data-datacenter dependencies as an augmented
hypergraph, and adopts a hypergraph partition approach, for
minimizing the WAN data transfer volume. It outperforms
the previous approach through a single-phase hypergraph
partition method, that is, distributing tasks according to
datacenters’ capacities within a single partition step effi-
ciently. Since datacenters are heterogeneous, HPS+ is able
to assign more tasks to the ones with larger capacity. Next, it
considers sufficiently the risk of network contention among
tasks, and designs an task-aware Routing and Bandwidth
Allocation (RBA) algorithm to coordinate the data transfer
stage and computation stage among tasks, for minimizing
the makespan.
HPS+ faces various challenges in its design. The first

challenge is how to do data replica selection. As the data
files are replicated across multiple nodes, we need to choose
which replicas to create. To address this challenge, one of
the replicas is designated as the leader, and is responsible
for the data transfer. Moreover, HPS+ groups tasks that
share overlapped data to avoid duplicated data transfer, thus,
saving network resources. The second challenge is how to
place tasks in the network. Task placement must take into
account data volume and data locality so that each task
can analyze the required data from the best datacenter with
higher locality. To address this challenge, HPS+ chooses the
datacenter close to the input data with a goal to maximize
the datacenter-level data locality and minimize the WAN
data transfer. The third challenge is how to route flows in

the network. Traffic flows on WAN are generated due to
the non-local input data of tasks. Their endpoints depend
on the selected data replica and task placement. We address
this challenge by balancing the allocated bandwidth among
data transfers to reduce the makespan. Tasks with longer
computing stage are always prioritized for more bandwidth
to reduce the data transfer time. Note that, prior art in this
direction does not consider joint data and compute resource
optimization.
We evaluate HPS+ performance using simulations. We

submit tasks to two simulated geo-distributed cloud sys-
tems: the CVO cloud is configured from China-VO project
[8] and consists of 5 datacenters, the Google cloud is con-
figured from B4 network [9] and consists of 12 datacenters.
We compare HPS+ with three other algorithms and find
that HPS+ on average reduces the amount of data transfers
by 45%-52% and obtains 33%-38% better makespan than
existing mechanisms.
Our main contributions can be summarized as follows:
1. We propose a joint task scheduling and routing frame-

work for geo-distributed cloud frameworks.
2. We model the combined task-data dependencies and

data-datacenter dependencies as an augmented hyper-
graph, and present four techniques to improve the hy-
pergraph partition approach, for minimizing the WAN
data transfer volume. In a nutshell, these techniques
include: (i) introducing unit-weighted "virtual tasks",
(ii) negative weighted hypergraph nodes representing
datacenters, (iii) double-counting free cut-cost func-
tion, (iv) zero-approaching balance constraint.

3. We also propose a Routing and Bandwidth Allocation
(RBA) algorithm to minimize the makespan of the data
transfer stage and computation stage.

4. We evaluate the proposed scheme using simulations
and show that our proposed approach can reduce the
WAN data transfer volume by upto 53%, and reduce
the makespan by upto 39%.

The rest of the paper is organized as follows. Section 2
gives a scientific computing example that motivates our
work. We present the system model to formulate our
problem in section 3. Section 4 describes the design of
task scheduling and routing algorithm. In section 5.1, we
experimentally evaluate the performance of our proposal
compared with other algorithms. Section 6 presents the
related work. We conclude and discuss future work in
section 7.

2 Motivation Example
2.1 Background
In this project, our goal is to provide astronomers with a
cloud platform, which is able to realize the coordinated
processing of astronomical data generated by telescopes at
various locations. In this regard, we consider the cloud com-
puting resources provided by the China Virtual Observatory
(China-VO) for processing astronomical applications [2].
In astronomy, China has deployed a number of astronom-
ical telescopes, including radio telescopes (such as the
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Shanghai 65meter radio telescope), and optical telescopes
(such as LAMOST in Xinglong and 2.4meter telescopes)
in Lijiang [10]. These telescopes produce data for various
parameters such as electromagnetic radiation, γ-ray, X-ray,
infrared ray, etc., and need to extract useful information
from them, which is a complex and time consuming task
as it needs to process terabytes of data.
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Fig. 1. An Overview of Visualization in Astronomy

Fig. 1 depicts the high level structure of an astronomical
data visualization application [8], which has been studied in
some well-known projects like VizieR Catalog service [11],
WWT [12], Google Sky. In this application, the entire outer
space is captured by joining the images captured in the
form of a large number of small regions, according to
their coordinates. First, each data processing task creates
an image by processing multiple slices of data. Then, the
images acquired from these tasks are further combined
together and rendered to generate a panorama of space
within different wavebands. For this purpose, each data
processing task takes image data from multiple regions as
input, and furthermore, each image data might be processed
by multiple tasks due to the overlapping edges.

Our design goal is to minimize the makespan of these
tasks, which is challenging because the data sets are widely
dispersed over multiple distant datacenters.

2.2 Scheduling Results

Next, we compare the performance of different scheduling
algorithms in terms of minimizing the makespan of differ-
ent tasks. Fig. 2 summarizes the example settings (datacen-
ters, WAN, task graph, and files distribution) based on the
China-VO platform, and the scheduling results obtained by
various scheduling techniques such as Greedy, CDS [13],
HPS [8], Flutter [14] and our proposed HPS+. There are
five datacenters configured with 100, 100, 100, 100 and
110 cores, respectively. Five network links with different
available bandwidth connect the five datacenters, and five
files with different size (1000, 800, 1000, 1000 and 1000 )
are replicated and distributed in datacenters. In particular,
datacenter S1 stores the files of f1, f2, f3 and f5, while
S5 stores nothing. The application consists of five tasks,
processes the data and generates at most eight flows.
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Fig. 2. Example and Scheduling Results: Task Schedule,
Data Transfer Volume and Makespan Computed by Different
Scheduling Algorithms

2.2.1 Greedy Scheduling Algorithm (GS)

This algorithm greedily assigns tasks to the datacenter with
maximum data locality. If the datacenter with maximum
data locality cannot provide sufficient computing capacity,
the task will be assigned to the second data-local datacenter,
and so on. For our current example, task T1 is assigned to
datacenter S1, T2 is assigned to S2, T3 is assigned to S3, T4
and T5 is assigned to S4, generating WAN data transfer of
2800, and the makespan is 120.

2.2.2 Community Detection-based Scheduling (CDS)

By modeling the task scheduling as a community detection
problem, this algorithm iteratively places the tasks into
communities, while maximizing the modularity measure
Q = 1

2m
∑

i, j[Ai j −
kik j
2m ] δ(ci, cj ), where Ai j is pro-

portional to the data transfer volume [13]. In our current
example, the Q-measure is consistent with the data locality
measure. Hence, CDS produces the same scheduling results
as the GS.

2.2.3 Hypergraph Partition-based Scheduling (HPS)

This algorithm assigns tasks to datacenters utilizing a
hypergraph-partition method [8], which partitions the task
graph into balanced groups whose number is equal to
the number of datacenters. Balanced partitions leads to
jagged completion time, due to the varieties of datacenters’
capacities. Hence, HPS further reassigns tasks from the
long-run datacenter to the short-run datacenter in order to
balance the completion time, at the cost of increasing the
total file transfer volume. Different with our model, they
majorly focus on the situation that the overall computa-
tion requirements � the overall capacity supply, and it
allows tasks to wait in the queue if the datacenter does
not have sufficient capacity to accomodate a group. HPS
does not perform well in case of moderate computation
requirements, since its objective is load balancing. In our
example scenario, the five tasks are assigned to five different
datacenters, generating WAN data transfer volume of 3800,
and resulting in makespan of 120 in the example.
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2.2.4 Flutter
This algorithm formulates the scheduling problem as a
lexicographical min-max integer linear programming (ILP)
problem, and then transforms it into a nonlinear program
with a separable convex objective function and a totally
unimodular constraint matrix, which can be solved using
a standard linear programming solver efficiently [14]. The
original Flutter constrains the maximum number of tasks
assigned to a datacenter instead of constraining the amount
of requested resources, implying that all tasks require
the same amount of resources. It also assumes that the
network bandwidths are stable over time, meaning that
the bandwidths of the shortest path are used exclusively
by data flows. Hence, Flutter cannot directly solve our
scheduling problem, where we consider the more realistic
settings: each datacenter provides limited amount of re-
sources; and network bandwidths available to applications
varies significantly over time due to the sharing among
data flows. We modify Flutter as follows: First, obtain the
scheduling results using the original Flutter. Then, we adopt
a rounding technique if its results is not an integer. Given
the scheduling results, the makespan is derived using our
bandwidth allocation algorithm with regard to shared net-
work bandwidth. For the example scenario, although Flutter
produces the earliest makespan (130) if using exclusive
network bandwidth, its actual makespan in shared network
environment is the same as GS and CDS, which is 120.

2.3 Shortcomings of the Scheduling Techniques
Both GS and CDS neglect the potential impact of task
scheduling order on the WAN data transfer volume. HPS
addresses this problem, but generates more WAN data
traffic in order to achieve load balancing. Flutter further
results in more WAN data transfer, since it assumes that it
has sufficient bandwidth for WAN data transfer but in real
network it may not actually have available bandwidth. To
address these limitations of existing schedulers, we design
HPS+ that avoids the load balancing limitation of HPS using
and optimized algorithm to carefully arrange node weights
and it also support precise bandwidth allocation in shared
network. In summary, our HPS+ generates the least WAN
data transfer (2000) and the earliest makespan (104.3) be-
cause it removes the load balance constraint indirectly and
provides a coordination mechanism between task placement
and flow routing in shared network environemt.

3 System Model
In this section, we describe the system model and the
formulation of scheduling problem.

3.1 Overview
Fig. 3 presents the system architecture for task execution in
the geo-distributed cloud. The system has two main compo-
nents, a controller that schedules tasks in the network and
resource monitors that collect network and application stats
to help controller make scheduling decisions. The controller

TABLE 1
List of notations

Notation Definition
GS GS = (NS, ES ), the substrate cloud system.
Ri Capacity of datacenter i, ∀i ∈ NS .
Ruv Capacity of link uv, ∀uv ∈ ES .
hi The required computation capacity by task i.
GV GV = (NV , EV ), tasks-files relations network:

NV = NT ∪ NF

NT Task set.
NF Data files set.
EV Dependencies between tasks and data files.
NF
i The data set processed by task i.

NT
f

The set of tasks taking file f as input.
NS

f
The set of datacenters storing file f .

s f Size of a data file f .
pi CPU time of a task i.
b
f i
t Allocated bw on the substrate tunnel t for flow f i.

f k The kth replica of file f .
N∗ The set of “virtual tasks".
V The set of vertices of hypergraph.
E The set of nets in hypergraph: |E | = |NF |
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Central Controller
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Fig. 3. System Architecture for Distributed Job Execution

consists of a task scheduler and a SDN controller. The
task scheduler periodically starts the scheduling algorithm
if there are jobs arriving. It assembles jobs as one "big
job" and generates a schedule based on their requirements
and datacenter state. Network flows fall into two categories:
non-interactive and interactive flows. For interactive flows,
the SDN controller predicts their demands in the next
interval using a deep neural network model utilizing Long
Short-Term Memory (LSTM) network [15], and reserves
bandwidth for them. The flows generated by big data
analytic jobs falls into non-interactive flows. Depending
on the location of selected replica and task placement, the
flow routing module computes the required bandwidth and
makes the routing decision for each generated flow.
At each datacenter, the task and resource monitors man-

age the on-going tasks and collect application characteris-
tics and machine resource usage status. It regularly sends
"heartbeat" messages to the controller, reporting their latest
changes. The controller obtains the network status (such as
link bandwidth) from the openflow-enabled switches in the
network and routes traffic accordingly.
To model the system, we denote the cloud system by a

graph GS = (NS, ES ), where NS and ES are the set of dat-
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acenters and links between datacenters, respectively. Each
datacenter provides heterogeneous storage and computation
resources. Therefore, the available computational resource
of a datacenter i ∈ NS is described as Ri , which refers
to the available number of CPU cores. We assume that
the data is already saved on some data center and we do
not need to choose which datacenter we want to save each
replica. Data is stored in file form in datacenters, where
each data file can be replicated over multiple datacenters,
and only one of replica is designated as the input for
a task. The physical network among datacenters consists
of entities such as routers, switches, links and hubs. The
bandwidth capacity of a link uv ∈ ES is denoted by Ruv .
Communications on the network follow the bi-directional
multi-port model, which allows multiple incoming and
outgoing communications simultaneously as long as the
bandwidth constraints are not violated. We also assume that
path splitting is supported by the substrate network.

3.2 Task Model
Big data analytics often divide the job processing into
stages (like Mapreduce [16], Spark [17]), and a set of tasks
in each stage can run in parallel on different machines.
In our model, we only focus on the scheduling of tasks
in a single stage, and the optimization of the end-to-end
application performance is considered in our future work.
Let GV = (NV , EV ) be the task graph constructed by the set
of tasks NT and their input files NF , where NV = NT ∪NF

and EV denotes the dependency relations between tasks and
files. In our model, a file may be shared by multiple tasks,
while a task may take multiple files as input. A task starts
processing only after its input files are all transferred to
local storage. Thus, the running time of a task is comprised
of data transfer time and execution time. Suppose the file
f is one of the input for task i, and the size of a file
f is represented by s f , then its data tranfer time can
be computed as s f /bf i , where bf i denotes the allocated
bandwidth to flow f i. If an input file for a task has already
been transferred to local datacenter for some other task,
the task will just read the local replica directly, and we do
not transfer it again. Even in the same datacenter, it also
takes time to transmit the data from the file server to the
task server, although it may be an order of magnitude lower
than that taken by WAN.

Each task is encapsulated in a VM and each VM is
only allowed to run one task. Cloud providers advertise
the capacity offered by multiple discrete types of VM
instances and users make scheduling and placement de-
cisions accordingly for VM instance to use for each task
(denote by hi the required capacity by task i). We here
only consider the case that cloud providers have sufficient
capacities to accommodate all VMs, i.e., the starting times
of all the tasks in a datacenter are the same. We estimate
the CPU time (denoted by pi) of a task through dividing its
number of instructions by VM CPU speed (MIPS), that is,
pi = #o f insts/V Mspeed, as the VM instance required for
each task is chosen independently of the other load (users)
in the network.

3.3 Problem Statement
Given a geo-distributed cloud system and task model
described above, we seek a schedule to minimize the
makespan, by orchestrating the replica selection, task place-
ment and flow routing. We formulate the problem as a
mixed integer programming (MIP) problem.

We define four variables to represent the sub-problems
of replica selection, task placement and routing:
• xi j : a binary variable, which has the value "1" if task i
is assigned to datacenter j. Otherwise, it is set to "0".

• y f k i: a binary variable, which has the value "1" if the
kth replica of the input file f of task i is selected for
data transfer. Otherwise, it is set to "0".

• bf k i
t : the bandwidth allocated on the substrate routing

path t for the data flow from a replica f k to task i.
• z f

k i
t : a binary variable, which has the value "1" if

bf k i
t > 0. Otherwise, z f

k i
t = 0.

Objective:

minimize : c (1)

where c is the makespan.

Constraints:
s f

bf i + ϕ
+ pi ≤ c, ∀ f ∈ NF, ∀i ∈ NT (2)∑

f i∈EV

∑
f k ∈{ f }

∑
{t |uv∈t }

bf k i
t ≤ Ruv, ∀uv ∈ ES (3)∑

i∈NT

hi xi j ≤ Rj, ∀ j ∈ NS (4)∑
j∈NS

xi j = 1, ∀i ∈ NT (5)∑
f k ∈{ f }

y f k i = 1, ∀i ∈ NT , ∀ f ∈ NF
i (6)

(y f k i − 1)z f
k i

t = 0, ∀t, f ki (7)∑
f k ∈{ f }

y f k i

∑
t

z f
k i

t > 0, ∀ f i ∈ EV (8)

(y f k i − 1)bf k i
t = 0, ∀t, f ki (9)∑

f k ∈{ f }

y f k i

∑
t

bf k i
t > 0, ∀ f i ∈ EV (10)

z f
k i

t

[
(xi j Ijt − 1) + (y f k i I f k t − 1)

]
= 0, ∀i, t, f i (11)∑

f k ∈{ f }

y f k i

∑
j

xi j
∑
t

Ijt I f k t z
f k i
t > 0, ∀ f i (12)

bf k i
t

[
(xi j Ijt − 1) + (y f k i I f k t − 1)

]
= 0, ∀i, t, f i (13)∑

f k ∈{ f }

y f k i

∑
j

xi j
∑
t

Ijt I f k tb
f k i
t > 0, ∀ f i ∈ EV (14)

bf k i
t + (1 − z f

k i
t ) > 0, ∀ f ki, t (15)

bf k i
t (1 − z f

k i
t ) = 0, ∀ f ki, t (16)

bf k i
t ≥ 0, ∀ f i ∈ EV , ∀ f k ∈ { f } (17)

xi j, y f k i, z f
k i

t ∈ {0, 1}, ∀i j, f ki, t (18)
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• Constraint (2) enforces that all tasks are completed be-
fore c. Let bf i =

∑
t bf k i

t ,∀ f ∈ NF
i . Since a task starts

processing as long as its input data are transferred
to local, we have ci = max f ∈NF

i
(s f /(bf i + ϕ)) + pi ,

∀i ∈ NT , where ϕ is a small constant close to 0, and
is used to avoid division by zero errors.

• Constraint (3) and (4) enforce the capacity bounds of
the substrate links and datacenters.

• Constraint (5) makes sure that only one datacenter is
selected for each task. Constraint (6) indicates that an
input file for a task can only be transferred from a
single replica.

• Constraint (7) together with (8) specify the correct
correlation between y f k i and z f

k i
t . When y f k i = 0,

z f
k i

t must also be 0 for ensuring (7). It means that,
when f k is not selected as the input replica for task
i, there exists no data transfer from f k to i. When
y f k i = 1, constraint (7) is established. However, due to
constraint 8, we conclude that there exists at least one
routing path t transmitting data from f k to i, when f k

is designated as an input replica for task i. Likewise,
constraint (9) and (10) together guarantee the correct
correlation between y f k i and bf k i

t :
• Constraint (11), (12) and (18) together make sure
the correct correlation among xi j , y f k i and z f

k i
t . In

particular, Ijt (or I f k t ) has the value “1" if path t
uses j ( f k) as the end (start) point and “0" otherwise.
When z f

k i
t = 1, we must have xi j Ijt = 1 and

y f k i I f k t = 1 simultaneously. It means that, when flow
f ki is transmitted over path t, the start point of t should
be f k and the end point of t should be j. On the other
hand, when z f

k i
t = 0, xi j and y f k i could be either

"0" or "1". Constraint (12) ensures that, when task i
is placed on j and replica f k is selected for flow f i,
there exists at least one tunnel t for transmitting flow
f i. Likewise, constraint (13), (14) and (17) together
guarantee the correct correlation among xi j , y f k i and
bf k i
t .

• Constraint (15) together with (16) specify the correct
correlation between bf k i

t and z f
k i

t . Because of con-
straints (15), (17) and (18), when bf k i

t = 0, z f
k i

t must
be 0 as well. Because of constraints (16), (17) and
(18), when bf k i

t > 0, z f
k i

t must be 1.
• Constraint (17) and (18) refer to the domain con-
straints.

Theorem 1. The problem of minimizing the makespan for
data-intensive applications (Formula (1)-(18)) is NP-Hard.

Proof: Let us first consider the decision problem
corresponding to the above problem as follows: Given a
pre-defined makespan c, is there a scheduling and routing
plan such that achieves a makespan of no largere than c
while satisfying the constraints (2)-(18)? It is easy to see
that the problem is in NP: given a scheduling-routing plan,
a positive answer to the decision problem is verifiable in
time O(n), where n = |NT |.

Next, we show that this decision problem can be solved
using the 3-Partition approach.
3-Partition problem [18]: Given positive integers δ, ψ, and
a set of integers X = {x1, x2, ..., x3δ } with

∑3δ
k=1 xk = δψ

and ψ/4 < xk < ψ/2, ∀k, does there exist a partition
{Ω1,Ω2, ...,Ωδ } of X with |Ωl | = 3 and

∑
xi ∈Ωl

xi = ψ,
∀l ∈ [1..δ]?

Given the above definition of the 3-Partition problem,
an instance of the minimizing makespan problem can be
defined as follows: Suppose the number of tasks n = 3δ,
the number of datacenters m > δ, and hi = xi , ∀i ∈ [1..3δ],
so
∑3δ

i=1 hi = δψ. Also assume that all the data files are
replicated on a subset δ of all datacenters (denoted by Nδ

the set of these δ datacenters), while the rest of datacenters
do not store any data. Therefore, if a task is scheduled
on one datacenter in Nδ , it will not produce any network
transmission since the data is available locally in that
datacenter. However, if a task is scheduled on any one of the
rest of datacenters, it starts processing only after network
transmission (the data transfer time is greater than 0) is
finished. For an arbitrary task i, we set pi = c. Therefore,
if any task is not scheduled to one datacenter in Nδ , the
objective function (Formula (1)) will be greater than c. That
is, any task has to be scheduled on one of the datacenters
in Nδ . Now, if Ri = ψ, ∀i ∈ Nδ , then

∑
i∈N δ Ri = δψ.

Since ψ/4 < hi < ψ/2 for each task, this means we cannot
schedule more than 3 tasks to any datacenter i ∈ Nδ .
Therefore, each datacenter will accomodate exactly 3 tasks
because there are 3δ tasks that need to be scheduled on
δ nodes. Henceforth, a 3-Partition problem provides a
solution to the decision problem. Conversely, a solution to
the decision problem with c = pi , ∀i and

∑
i∈N δ Ri = δψ

provides a solution to the 3-Partition problem. Since the
problem with c = pi , ∀i and

∑
i∈N δ Ri = δψ is just a

special example of the decision problem, it is at least as
hard as 3-partition problem.

4 Our Solution: HPS+
Since the underlying resource allocation problem is NP-
Hard, large-scale instances and models make this problem
computationally intractable. To avoid exploring all possible
combinations of replica selection, task placement and flow
routing, HPS+ adopts a joint algorithm that first orchestrates
the replica selection and task placement for minimizing the
volume of transferred data, i.e., maximizing the datacenter
level-locality, and then uses a flow routing and bandwidth
allocation mechanism to balance network load and mini-
mize the completion time of each task.

4.1 Minimizing Data Transfer Volume
To minimize the volume of transferred data, each task
is preferably assigned to the datacenter storing its input
data, i.e., datacenter-level locality. However, the input data
of a task may be dispersed over multiple sites, and the
computation capacity of a datacenter is usually limited.
Therefore, it is not always possible to accommodate all
the tasks, satisfying full data-locality. Some tasks have to
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Fig. 4. Task scheduling: (1) Construct the augmented task
graph, (2) Hypergraph partition.

be assigned to non-local datacenters, thereby resulting in
cross-domain data transfer. While considering more than
one replica for each file, the task assignment is made more
complicated by the introduction of data replica selection.

We combine the replica selection and task placement
problems using an augmented task-file-DC hypergraph. In
particular, first, we extend the task graph to create an aug-
mented task graph that leverages the dependency relations
between tasks and input files and also the dependency
relations between file replicas and datacenter locations.
Next, we model the augmented task graph as a hypergraph,
which allows us to solve the data replica selection problem
and task placement problem simultaneously, and distributes
the computational loads among datacenters to reduce the
amount of data transfers.

4.1.1 Augmented Task Graph Construction
Since each f ∈ NF may have multiple replicas, which are
distributed over more than one datacenter, the dependency
relationship between f and datacenters is used to extend
the task graph. That is, the augmented task graph GAG =

(N AG, EAG ) is constructed as below,

N AG = NT ∪ NF ∪ NS;

EAG = EV ∪ {( f , n) | f ∈ NF, n ∈ NS
f }

where N AG consists of all nodes belonging to NT , NF

and NS , and EAG is obtained by connecting f ∈ NF to the
substrate nodes in NS

f
using meta edges, where NS

f
refers to

the set of datacenters storing replicas of f . Fig. 4 illustrate
the augmented task graph for the example shown in Fig. 2.

4.1.2 Hypergraph Partitioning
We use a hypergraph to model the augmented task graph.
A hypergraph H = (V, E) is defined as a set of vertexes
V and a set of nets (hyperedges) E. Every net n j ∈ E
consists of a subset of vertexes. Weights can be associated
with the vertexes and costs can be associated with the
nets. The k-way hypergraph partitioning problem is defined
as [19]: given a hypergraph H = (V, E), find a k-way
partition V → P that maps the vertexes of H to one of k
disjoint partitions such that some cost function is minimized
and the given partitioning constraints are satisfied. Let
P = {H1, H2, ..., Hk } be a k-way partition of H , then
∀i, j ∈ [1..k], we have Hi∩Hj = ∅ and H1∪H2...∪Hk = H .
We call a hyperedge e of hypergraph is a cut if, with respect

to a particular partition, its vertexes are mapped to more
than one partition.

We next show that, the solution to the k-way hypergraph
partitioning problem that minimizes the cut size (defined
over the cut nets), while meeting a given balance criterion,
can be applied to data replica selection and task placement.
In summary, we design four techniques to do this:

(1) Introducing unit-weighted "virtual tasks": To
remove the balance criterion in the original hypergraph
partitioning, we introduce a number of “Virtual Tasks"
(denoted by N∗) with each of them requiring a single core,
for ease of hypergraph partitioning. Tasks belonging to N∗

are only used in the scheduling process and not in the real
execution. As a result, all “Virtual Tasks" are independent:
each of them takes no input and generates no output, and
it takes no time to execute. If the required number of cores
for all real tasks (denoted by R) are less than the supply
of all datacenters (denoted by S), the number of “Virtual
Tasks" would be S − R.

In our hypergraph H = {V, E}, each vertex in V is also
a node in NT ∪ NS ∪ N∗, i.e., V = NT ∪ NS ∪ N∗. In
other words, there exist three types of vertexes in V : the
real task vertexes, corresponding to tasks in NT ; the virtual
task vertexes, corresponding to “Virtual Tasks" in N∗; and
the datacenter vertexes, corresponding to datacenters in NS .
Hence, |V | = |NT | + |NS | + |N∗ |.

(2) Negative weighted hypergraph nodes representing
datacenters: For a vertex vt ∈ NT ∪ N∗, we set its weight
to the capacity requirement of the task, i.e., w(vt ) = hvt .
For a vertex vs ∈ NS , we set its weight to the negative of
the capacity of datacenter, i.e., w(vs) = −Rvs . A net n j ∈ E
represents the file f j , it contains the task vertexes in NT

fj

and the datacenter vertexes in NS
fj
. We set the cost of n j

to the size of the file, i.e., c(n j ) = s fj . Note that tasks in
N∗ have no input, so there exist no nets connecting tasks
in N∗ and any files.

(3) Double-counting free cut-cost function: Each parti-
tion includes a group of task nodes and a single datacenter
node. It suggests that the tasks in the partition should
be scheduled in the datacenter, leading to the minimum
data transfer across partitions, hence we let k = |NS |

in our hypergraph partitioning settings. Let Λj be the
connectivity set of a net n j (representing file f j), which
is the set of partitions that n j connects, and λ j = |Λj | is
the number of partitions it connects. Then, f j needs to be
transferred for λ j − |NS

fj
| times, where |NS

fj
| denotes the

number of datacenters storing f j . Therefore, we define the
cost function Cut(P) as below:

Cut(P) =
∑
n j ∈P

c(n j )(λ j − |NS
fj
|) (19)

(4) Zero-approaching balance constraint: The objec-
tive of hypergraph partitioning seeks to minimize Cut(P),
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while maintaining a balance on the part weights, i.e.,

∑
v∈Hj

w(v) ≤ ε, ∀Hj ∈ P (20)

where ε is a predetermined small constant close to 0, im-
plying the imbalance ratio. Clearly, we have ε < min{hvt }.

We now show that, with the four techniques designed
above, each partition contains one and only one datacenter
vertex. Therefore, with the above constraints, the capacity
requirements of tasks assigned to the same datacenter will
not exceed the datacenter’s capacity.

Theorem 2. Given an augmented task hypergraph H =
{V, E}: V = N AG ∪ N∗, E = EAG , suppose ∀vt ∈
NT , w(vt ) = cvt , ∀v f ∈ NF , w(v f ) = 0 and ∀vs ∈
NS , w(vs) = −Rvs , then for a |NS |-way partition
P = {H1, H2, ..., H |NS | }, balance constraint: ∀Hj ∈ P,∑

v∈Hj
w(v) ≤ ε , ensures that each partition contains one

and only one datacenter vertex.

Proof: In the |NS |-way partitionment, to ensure ∀Hj ∈

P,
∑

v∈Hj
w(v) ≤ ε , each partition must have at least one

vertex whose weight is negative. Because w(vs) < 0,
w(vt ) > 0 and w(v f ) = 0, each partition must have at
least one datacenter vertex. As all vertexes are divided into
|NS | partitions, and there are just |NS | vertices associated
with negative weight, each partition contains one and only
one datacenter vertex. Proof end.

Corollary 1. The cut cost function Cut(P) =∑
n j ∈P c(n j )(λ j − |NS

fj
|) directly derives the amount

of data transferred among datacenters.

Proof: This can be derived using Theorem 2: since
each partition contains one and only one datacenter ver-
tex, there must be λ j − |NS

fj
| partitions who does not

have f i locally. Hence, the WAN data transfer volume is∑
n j ∈P c(n j )(λ j − |NS

fj
|).

Theorem 3. Given an augmented task hypergraph H =
{V, E}: V = N AG∪N∗, E = EAG , the optimal partition P =
{H1, H2, ..., H |NS | } to the |NS |-way hypergraph partitioning
problem that minimizes Cut(P) while satisfying the balance
constraint: ∀Hj ∈ P,

∑
v∈Hj

w(v) ≤ ε , also minimizes the
volume of WAN data transfer.

Proof: We prove this by contradiction. Assume that
task i is placed into Ha ∈ P, but it should be placed into
Hb if we solely minimize the WAN data transfer. Since
the vertexes belonging to N∗ are isolated points without
connection to any other vertexes, they can be simply placed
in an arbitrary partition, as long as their aggregated capacity
requirements do not exceed the datacenter’s capacity (i.e.,
following Formula 20). Therefore, by placing i into Hb and
moving Ri number of "virtual tasks" from Hb to Ha, we get
a new |NS |-way partitionment P′, where Cut(P′) < Cut(P)
and the balance constraint ∀Hj ∈ P,

∑
v∈Hj

w(v) ≤ ε is
still satisfied. This contradicts the fact that P is the optimal
partition. Thus, the |NS |-way partition of H also minimizes

the volume of WAN data transfer.

The hypergraph partitioning problem is known to be
NP-hard [20], and it can be solved using the Multilevel
Fiduccia-Mattheyses (MLFM) framework [21], that has
three phases (i) Coarsening: coarsen the initial hypergraph
into a sequence of smaller hypergraphs; (ii) Top-level parti-
tioning: partition the smallest hypergraph; (iii) Refinement:
project a coarse partitioning to a finer hypergraph and
improve the partitioning using a refinement method. Since
the coarsening phase takes a linear time complexity: O(|V |)
[22] and the Fiduccia-Mattheyses heuristic in top-level
partitioning phase takes time O(|E |) [23], the overall time
complexity of MLFM is O(|V |+ |E |+µ|E |) [19], where µ is
the number of levels used in refinement phase, and usually
only a small number of levels are needed in practice.
We implement our approach based on customized San-

dia’s Zoltan toolkit [24]. However, the latest Zoltan v.3.83
only supports a cost function (i.e., Cut(P)) defined in func-
tion Zoltan_PHG_Compute_ConCut(), which calculates
Cut(P) of a partition in the following way:

Cut(P) =
∑
n j ∈P

c(n j )(λ j − 1)

Compared with (19), this does not meet our needs because
we use data replicas to reduce data transfer on WAN.
Hence, we need a customized partitioning supporting
our cost function (19) and balance criterion (20). We
improve the Zoltan toolkit by implementing mechanisms
distinguishing the task vertexes and datacenter vertexes, and
a new Zoltan_PHG_Compute_ConCut_MultiReplicas()
function is implemented to compute Cut(P)
using (19). We also define a new function of
Zoltan_Set_HG_CS_Custom_Fn() to pass the parameter
of the number of replicas (i.e., f ileCopy) to Zoltan, as
shown in the listing below.

1 i n t Zoltan_Set_HG_CS_Fn (ZZ ∗zz ,
2 ZOLTAN_HG_CS_FN ∗fn , vo id ∗ da ta , i n t ∗ f i l eCopy )
3 {
4 zz−>Get_HG_CS = fn ;
5 zz−>Get_HG_CS_Data = d a t a ;
6 zz−> f i l eCopy = f i l eCopy ;
7 r e t u r n ZOLTAN_OK;
8 }

Fig. 4 also describes the partitioning results for the
example in Fig. 2. That is, task T2 and T3 are assigned
to S1, T1 is assigned to S3, T4 and T5 are assigned to S4,
generating two WAN data transfers: sending f1 from S1
to S3, and sending f5 from S1 to S4. The total WAN data
transfer volume is 2000, which is far less than the other
algorithms. The makespan is 104.3, which is also much
earlier than the others.

4.2 Flow Routing and Bandwidth Allocation
Given the task scheduling results, we select the replica that
requires the least number of hops to reach as the input for
each task. Then, we orchestrate the generated data transfers
for minimizing the makespan, i.e., the completion time of
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the slowest task. Since it is difficult to have full control
over network bandwidth resources in the traditional network
architecture, we assume a SDN-enabled geo-distributed
cloud environment [9], which enables customization of
network operations by decoupling the network control plane
and data plane, supporting accurate bandwidth allocation to
flows. While existing approaches usually address the task
placement [13], [14] and flow routing [9], [25] separately,
thus achieving sub-optimal performance, we present a coor-
dination mechanism between tasks and WAN traffic, which
allocates network resources closely following the guidelines
of task requirements.

Generally, tasks with longer CPU time are supposed to
obtain more bandwidth than the others, unless their input
data sizes are small. To complete a task i before c, we can
compute the required bandwidth for transferring flow f i as
below,

s f
bf i
+ pi ≤ c ⇒ bf i ≥

s f
c − pi

, ∀ f i ∈ EV (21)

The makespan is at least equal to the maximum CPU
time, i.e., c ≥ max∀i∈NT (pi), where the equation holds only
when the slowest task accesses its input data locally. Let
pmax = max∀i∈NT (pi). If c = pmax and pmax > pi , then the
deadline c is not violated by i only when bf i ≥ s f /(pmax −

pi) is established. Fig. 5 illustrates three examples of tasks:
task 3 has the longest CPU time; task 1 (or task 2) must
request bandwidth at least s f /(p3 − p1) (or s f /(p3 − p2)) to
ensure the makespan p3. However, since the network may
not be able to provide sufficient bandwidth resources, the
makespan may be increased from c to c1 if the bandwidth
that is allocated to flow f i is decreased by ∆bf i:

∆bf i =
s f

c − pi
−

s f
c1 − pi

(22)

The flow routing problem can be modeled as a Multi-
commodity Flow Problem (MCF) that provides a multi-path

routing solution for each flow using optimal linear program-
ming algorithms [26]. Our goal is to find a solution with a
maximum allocation of bandwidth for each commodity with
respect to their utility functions (Formula 21). The MCF
problem can be solved directly, but the linear programming
(LP) optimal solution is expensive and does not scale well.
Hence, we borrow the basic design principles of an efficient
traffic engineering algorithm from B4 [9], and adapt it to
our settings as follows: taking the makespan as the fair share
level and allocating bandwidth following the utility function
of 21. The key idea is that, the bandwidth allocation step is
repeated by progressively decreasing a pre-selected large c.
Everytime we decrease c, the newly requested bandwidth by
each flow is computed using Formula 22, and is allocated
from the current shortest routing path. Fig. 6 illustrates
three examples of the functional relationship between the
requested bandwidth and the makespan. The requested
bandwidth by each flow increases at different slopes as the
makespan decreases.

To improve the network utilization, although the
makespan cannot be further reduced after a flow f i gets
bandwidth more than bf i = s f /(pmax − pi), we do not stop
the bandwidth allocation process but continuously allocate
more until the link is fully utilized.

Algorithm 1 presents our design of routing and band-
width allocation (RBA) algorithm. First, we initialize the
makespan c with a large value M AX (Line 6). Then, we
compute the required bandwidth bi j for each flow using
Formula 21, and allocate them with bi j from their respective
shortest path for satisfying c (Line 7-11). The bandwidth
allocation step is repeated by progressively decreasing c
(Note that the value of c depends on the real problem
settings. In our experiments, we initialize c = 20, 000 and
the step size of decrement is set to 500.): everytime we
decrease c, the allocated bandwidth to each flow increases
by ∆b, which is derived by Formula 22 (Line 13-14). The
increased ∆b to each flow causes updates to the current
path’s used bandwidth and each network link’s remaining
bandwidth (Line 15-18). If the current path of flow i j can-
not provide more bandwidth for satisfying ∆b, we choose
to allocate more bandwidth from the next shortest path in
Pi j[N] (Line 20-22). Likewise, if the available bandwidth
for a flow runs out, it is removed from the allocation process
(Line 23-24). The time complexity of RBA is O(φ|EV |),
where φ denotes the number of times we decrease c and
|EV | is the maximum number of flows generated by tasks.

Theorem 4. The time complexity of HPS+ is O(|NT |+|NS |+

|N∗ | + µ|NF | + φ|EV |).

Proof: Since the time complexity of hypergraph parti-
tioning is O(|V | + |E | + µ|E |) and the time complexity of
RBA is O(φ|EV |), and we have |V | = |NT | + |NS | + |N∗ |
and |E | = |NF |, the overall time complexity is O( |NT | +

|NS | + |N∗ | + µ|NF | + φ|EV |).
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Algorithm 1: Routing and Bandwidth Allocation Al-
gorithm (RBA)
Input : NV = NT ∪ NF , EV , GS = (NS, ES );
Output
:

Mapping of flows in EV to ES;

1 [Parameters]:
2 Time c; {the makespan.}
3 Flow i j; {data flow from data i to task j.}
4 Path Pi j[N]; {The N shortest paths for flow ij.}

5 [Routing Phase]:
6 Initialize c ← M AX ;
7 for each data flow i j do
8 i j .curP = Pi j[0]; // from the 1st path
9 Compute for bi j using Formula 21;

10 Add bi j to ij.curP.usedbw;
11 Subtract bi j from ES .link .remainingbw;
12 do
13 Decrease c;
14 Compute ∆bi j for each flow using Equ. 22;
15 for each unfinished flow i j do
16 Add ∆bi j to ij.curP.usedbw;
17 Subtract ∆bi j from ES .link .remainingbw;
18 update all ij.curP.remainingbw;
19 if ij.curP cannot provide more bw satisfying i j .∆

then
20 i j .usedPathSet ← i j .curP;
21 ij.curP++; // next path
22 if ij has no more avaliable bw then
23 move i j to the finished flows set.
24 while No more bw left or all bw demands are met;
25 Quantize the allocated bw to each flow.

TABLE 2
Configurations of datacenters in CVO.

Configuration Beijing Nanjing Shanghai Yunnan Xinjiang
Data (TB) 55 50 30 10 5
Cores (#) 900 690 850 350 160

Core rating (MIPS) 1330 1166 1200 1140 1000

5 Performance Evaluation
5.1 Experimental Setup

Cloud system: We simulate two real networks: the China-
VO network and the Google B4’s network. In the China-VO
network, the cloud system has 5 datacenters and 7 WAN
links [8] We configure the network based on the real param-
eters from China-VO, including datacenters’ configurations
as shown in Tab. 2 and the WAN bandwidth capacity of
all links are set by 1GE. In the Google network, the cloud
system has 12 datacenters and 19 WAN links [9]. We do
not have the capacity information for it, but simply simulate
the system with random computing capacity from a uniform
distribution with range [2, 32]× 103, and set the bandwidth
capacity the same as China-VO network.

TABLE 3
Performance comparison (B4 network).

Metric File Transfer Volume Makespan
1 − hps+

alg . GS HPS CDS Flutter GS HPS CDS Flutter

cc
r=

0.
1 max 0.23 0.33 0.31 0.24 0.19 0.21 0.30 0.21

mean 0.17 0.27 0.22 0.19 0.11 0.15 0.25 0.10
min 0.09 0.22 0.08 0.12 0.01 0.11 0.17 0.01

cc
r=

1 max 0.20 0.29 0.28 0.22 0.09 0.13 0.24 0.09
mean 0.16 0.26 0.20 0.18 0.04 0.10 0.18 0.03
min 0.09 0.23 0.05 0.13 0.00 0.07 0.13 -0.01

cc
r=

10 max 0.24 0.34 0.30 0.26 0.09 0.12 0.25 0.12
mean 0.13 0.25 0.20 0.16 0.03 0.09 0.18 0.05
min 0.04 0.20 0.01 0.06 -0.02 0.04 0.08 -0.02

TABLE 4
Performance comparison (CVO network).

Metric File Transfer Volume Makespan
1 − hps+

alg . GS HPS CDS Flutter GS HPS CDS Flutter

cc
r=

0.
1 max 0.42 0.53 0.39 0.40 0.29 0.36 0.26 0.27

mean 0.29 0.32 0.25 0.28 0.24 0.26 0.20 0.21
min 0.11 0.05 0.09 0.08 0.10 0.04 0.07 0.05

cc
r=

1 max 0.39 0.52 0.34 0.40 0.33 0.39 0.29 0.29
mean 0.30 0.32 0.27 0.29 0.24 0.26 0.21 0.21
min 0.12 0.02 0.09 0.08 0.11 0.02 0.09 0.07

cc
r=

10 max 0.36 0.49 0.32 0.35 0.31 0.36 0.30 0.28
mean 0.29 0.31 0.25 0.27 0.23 0.25 0.20 0.19
min 0.12 0.04 0.10 0.10 0.11 0.03 0.08 0.06

Workloads: We simulate at most 2000 tasks and sched-
ule them to datacenters. Each task requests a certain amount
of computation capacity, which is randomly generated from
range [1, 10]. The CPU time of a task j (i.e., pj) is
selected randomly from range [10, 1000] seconds, follow-
ing Facebook’s experiences that more than 90% of their
tasks are completed within 1000 seconds [27]. We also
evaluate the performance of our algorithms under different
communication and computation loads (denote by CCR the
communication to computation ratio), and the input files of
each task is determined by CCR×pj . We create 2000 files in
different sizes and distribute them to China-VO datacenters,
and distribute 8000 files to the Google datacenters. The size
of each file is selected randomly from a uniform distribution
with range [0.2GB, 5GB] by studying the history data from
astronomy.

Performance comparison: We compare our proposal
with four scheduling algorithms: Greedy, CDS [13], HPS
[8], Flutter [14]. Given the output schedule by these al-
gorithms, they default to utilizing the traditional TCP/IP-
based network protocol for data transfer, but do not take
into account the coordination between task scheduling and
flow transfer. To be fair, we also apply our RBA algorithm
into their bandwidth allocation. All results are normalized
to 1 by dividing their values by the maximum in its group
of experiments.

5.2 Experimental Results
5.2.1 The Data Transfer Volume
Firstly, we compare HPS+ to GS, CDS, HPS and Flutter
on the metric of data transfer volume. Fig. 7 and Fig. 8
highlight the total file transfer volume as a function of
increasing number of tasks, under different CCR settings.
We can see that the total file transfer volume generated
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Fig. 7. The total data transfer volume generated by algorithms in the B4 network (Normalized to ≤ 1).
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Fig. 8. The total data transfer volume generated by algorithms in the CVO network (Normalized to ≤ 1).

by the algorithms increases with the number of tasks. In
all the cases, HPS+ performs significantly better than the
other algorithms. Tab. 3 shows that, on B4 network, HPS+
can reduce the file transfer volume by upto 33%, when
CCR = 0.1. Likewise, in case of CVO network (Tab. 4),
HPS+ can reduce the file transfer volume by upto 53%.
Even for the data-intensive tasks (i.e., CCR = 1, 10), HPS+
still performs a substantial reduction in WAN data transfer
volume. In particular, with CCR = 10 in CVO network,
HPS+ outperforms GS, HPS and CDS on the file transfer
volume metric by an average of 29%, 31%, 25%, and 27%,
respectively. Among the algorithms, HPS does not perform
well, because its hypergraph partition process not only tries
to minimize the data transfer volume, but also optimizes the
load balance between groups. Therefore, a load-balanced
task group could increase the file transfer volume. CDS
algorithm outperforms HPS, but the gap gradually narrows
as the number of tasks increases. When the task load
exceeds 1100 in B4 case (or 1500 in CVO case), CDS al-
gorithm generates more data transfer due to inaccurate task
scheduling order. Flutter provides comparable performance
to GS on data transfer volume, since Flutter’s exclusive
network bandwidth assumption limits its performance in
shared networks.

5.2.2 The Makespan

The reduction in the amount of WAN traffic can reduce
the makespan. Fig. 9 and Fig. 10 show the makespan as
a function of increasing number of tasks on B4 network
and CVO network, respectively. We find that, on B4 net-
work, HPS+ outperforms GS, CDS, HPS and Flutter on
the makespan metric by an average of 11%, 15%, 25%
and 10%, respectively, when CCR = 0.1. While on CVO
network, HPS+ reduces the makespan by an average of
24%, 26%, 20%, 21%, respectively. Tab. 3 and Tab. 4 also
show that HPS+ brings a substantial reduction in makespan
for more data-intensive task load (i.e., CCR = 1, 10). In
particular, when CCR = 10, HPS+ can reduce the makespan
by upto 30% in B4 network, and by upto 39% in CVO
network. We also see that while CDS generates shorter
makespan than GS and HPS in the CVO case, it performs
much worse than them in the B4 case. The reason is that
CDS requires a much longer warming times to maximize
its modularity in the larger scale network of B4. The gap
between HPS+ and HPS gradually narrows as the increase
of the number of tasks, especially in CVO network, due
to the natural support for high computation requirements
by HPS. We do not compare their performance under
settings with more than 2000 tasks, because the overall
computation requirements generated using random numbers
are exceeding the overall supply by datacenters, which is not
supported by HPS+.
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Fig. 9. The makespan generated by algorithms in the B4 network (Normalized to ≤ 1).
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Fig. 10. The makespan generated by algorithms in the CVO network (Normalized to ≤ 1).
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Fig. 11. The makespan when cpu requirments of all tasks are
set to 1 and ccr=1 in CVO network (Normalized to ≤ 1).

Since the system settings by Flutter is slightly different
with ours, we also did another group of experiments in
CVO network by setting hi = 1, ∀i, and assuming each
data flow is transferred by an exclusive routing path. Fig.
11 shows that Flutter indeed outperforms other algorithms
in the exclusive network, but HPS+ generates the shortest
completion time in the more real shared network.

We also illustrate the timeline (including data transfer
stage and computing stage) of 55 data flows generated
by an example run of the scheduler in Fig. 12. We see
that the makespan in traditional TCP/IP network performs
much larger variance than that in SDN network. Although
the computing stage of each task takes the same time
in both network scenarios, their data tranfer time varies
significantly. In traditional TCP/IP network, bandwidth is
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Fig. 12. The timeline of file transfer stage and computing
stage: (a) in traditional TCP/IP network; (b) using RBA algo-
rithm in SDN.

allocated in a "best-effort" way, hence the task with long
computing stage may not be able to recieve more bandwidth
to reduce its file transfer stage (e.g., Flow ID #3). In SDN,
however, the tasks with longer computing stage are always
prioritized for more bandwidth, due to the coordination
between task placement and flow routing, and the exact
bandwidth allocation by RBA algorithm. Therefore, the
makespan becomes much shorter.

5.2.3 Algorithm Running Time
Fig. 13 shows the running time of the algorithms. We
see that Flutter takes far more time than the others, and
even reaches 6,089 seconds when the number of tasks is
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Fig. 13. The running time of algorithms

2,000, while the others only takes less than 4 seconds.
This is primarily due to the low-efficient ILP solving
process. The time complexity of GS, CDS, HPS and
HPS+ are O( |NV | |NS |), O( |NV | |NS |), O(|EV | |NS | |NV |2 +
O(|EV | |NS |2 |NV |) and O(|NT | + |NS | + |N∗ | + µ|NF | +

φ|EV |), resepctively. Although GS and CDS have the same
time complexity, CDS takes more time than GS due to
its complex computation on Q-measure. HPS takes a lot
of time in its task reassigning phase, and its running time
increases significantly as we increase the number of tasks.
HPS+’s running time does not vary much over the number
of tasks, because it does not have the reassigning phase,
and the total number of tasks in the hypergraph actually
does not change due to the created “virtual tasks" (N∗).

6 Related Work
6.1 Geo-distributed data analytics
Big data analytics across multiple data centers are receiving
increasing attention in recent days [28]. One major chal-
lenge for geo-distributed data analytics is the high costs and
latency of links spanning multiple domains, which could be
an order of magnitude higher than the intra-domain links.
Li et al. [29] jointly consider input data movement and
task placement, to minimize the WAN traffic generated by
Mapreduce jobs. However, their proposal cannot solve our
problem because they did not study the data sharing and
network sharing issue in scheduling. Heintz et al. [30] only
study the grouped aggregation primitive in geo-distributed
data analytics, and jointly minimize both staleness and
WAN traffic by utilizing both edge and central resources in
a carefully coordinated manner. Awan [31] is a two-level
architecture resource manager for edge cloud environment,
and enables each computing framework’s jobs to be sched-
uled with high locality to reduce WAN traffic. Iridium [32]
achieves low query latency by optimizing placement of both
data and tasks of the queries, while our model assumes
datasets are previously distributed over datacenters. Hung
et al. [33] propose a job scheduling algorithm called SWAG
to reduce the makespan through coordinating job schedul-
ing across datacenters with low overhead. Their proposal
completely avoids WAN data transfer by dividing jobs into

arbitrary pieces, each of which is assigned to the datacenter
with its input dataset. Clearly, WAN data transfer could
reduce the makespan if the workloads vary significantly
across datacenters.
In case of scheduling data-intensive flows in multi-

DC environment, Zhang et al. [34] optimize the initial
data distribution, task placement and task replication in
a combined way to reduce the data transfer volume. For
service placement problem, Steiner et al. [35] and Selimi
et al. [36] also propose bandwidth-aware algorithms to
maximise the WAN bandwidth gain. In contrast with them,
we not only reduce the WAN traffic, but also present
coordination mechanism to minimize the makespan. Xu
and Li [37], Jiang et al. [38] and Narayana et al. [39] also
take into account the route selection in coordination with
task placement, but they do not support precise bandwidth
allocation.

6.2 Task scheduling

Many algorithms [40]–[44] have been presented to schedule
a large collection of file-sharing tasks onto heterogeneous
clusters with a goal of minimizing the total completion time
by considering the system’s heterogeneity such as networks
and CPUs. Giersch et al. [40], [42] design a collection of
heuristics to reduce the total execution time with lower
computational costs. In [41], they further deal with a
more general scheduling problem in a platform similar
with ours. This work establishes the NP-completeness of
the scheduling problem and design several new heuristics,
including an extension of the min-min heuristic. Based on
the work above, Kaya and Aykanat [43], [44] utilize hy-
pergraph to model the tasks, files and their interactions and
thereby formulate the total communication and computation
cost. They firstly find a lower and upper bounds on the
turnaround time, then iteratively refine the task assignments
by closing the gap between lower and upper bounds. In
[43], they assume a master-slave paradigm in the computing
model, and the master/server is as a repository for all
files. In [44], they turn to consider distributed repositories,
and all repositories are not necessary close to processors.
However, in our model, all files have been distributed inside
datacenters, i.e., we neither adopt a centralized repository
for all files, nor let files be dispersed far from processors.
Therefore, their proposal does not apply to our system.
Çatalyürek et al. [45] model the workflow as a hyper-

graph and with a hypergraph-partitioning-based formula-
tion, they propose a heuristic to reduce the file transfer in
the execution of workflows. Khanna et al. [46] also utilize
the hypergraph partitioning to minimize total volume of
file transfers and maintaining a balance on the loads of the
processors in a grid system. They deal with an applica-
tion consisting of file-sharing otherwise independent tasks
running on a set of homogeneous processors connected to
a set of storage nodes through a uniform (homogeneous)
network. Then, they used a hypergraph to model the appli-
cation which was partitioned into groups – one group to
one processor – using hypergraph partitioning. However, if
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the capability of computing nodes is not homogeneous, this
method would be ineffective. Venugopal et al. [47] apply
a Set Covering Problem (SCP)-based matching heuristic to
match independent tasks to resources in a way that they
explore all sets of job-resource combinations and select the
best one with the Minimum Completion Time (MCT) of
each job, thereby minimizing the makespan. However, they
do not take the task-task relations into consideration which
may result in shared data sets being retrieved multiple
times.

7 Conclusions and future work
In this paper, we address the problem of optimizing geo-
distributed data analytics with coordinated task scheduling
and flow routing, and present the design of HPS+. In
HPS+, we utilize hypergraph to model the combined task-
data dependencies and data-datacenter dependencies, and
seek for a possible schedule by solving the hypergraph
partitioning problem. We design four techniques to ensure
that the optimal k-way partitionment of the hypergraph
can generate a schedule with minimum WAN data transfer.
Given the generated task schedule, we also propose a traffic
engineering algorithm, which is able to allocate network
resources for all data flows in a coordinated manner with the
schedule result. In this way, tasks with longer computation
stage will be likely to get more bandwidth. Experiments
with two cloud systems show that HPS+ can significantly
reduce the WAN traffic, and thereby reduce the makespan.

The current implementation of HPS+ does not take into
account the de-allocation of network bandwidth. In the fu-
ture, we would like to further improve the network resource
usage and reduce the makespan through allocating and de-
allocating network resources. We will also continuously
deploy and optimize its implementation in the astronomical
cloud platform to improve its efficiency.
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