
Flame: A Centralized Cache Controller for
Serverless Computing

1

Yanan Yang (Tianjin University) Laiping Zhao (TianJin University)
Yiming Li (Tianjin University) Shihao Wu (Tianjin University)
Yuechan Hao (Huawei Cloud) Yuchi Ma (Huawei Cloud)
 Keqiu Li (Tianjin University)

Presented at: ASPLOS 2024, USA. 29 April, 2024

Cold start Problem in Serverless Computing
• Stateless functions suffers from a problem of cold start

• Function’ startup time can be orders of magnitude higher than the execution time

*Fifer [Middleware 2020]

2

Serving user request from a cached function instance can avoid long coldstart latency
3

The Function Caching
• Eliminating coldstart from cache-based function prewarming

 E.g., Instance pool, user-side function reserve

*unpausing a cached container takes only 0.5 ms

Coldstart (tens of seconds)

*[OSDI 2023]

Invocation

Cache hit (<1ms)
Invocation

1

2

4

The Non-trival Cache Cost
n Caching functions will consume the limited cloud resources

• A production system from one of the China’s largest cloud providers

• Serving 2 billions of requests every month

• Using >20% of memory to cache functions for <1% of coldstart ratio

Q: How to improve the function cache efficiency?

To improve the cache efficiency, serverless platforms commonly launch a local controller in each server,
which manages the creation and destruction of cached instances

5

Existing Approaches
• Time-to-live-based (TTL) function keepalive

• Dynamic function prewarming

• Priority-based function caching

*[AWS 2016]

*[ATC 2020]

*[ASPLOS 2021]

...

Cache replacement

Cache release

Local cache control Local Agent Local Agent Local Agent

 The "local cache control" is far from achieving high cache efficiency due to
 the workload skewness across servers

6

Our Contributions
n Key observations

• Cache contention from hotspot functions

• Cache redundancy across different servers

*[ASPLOS 2019]

workload skewness from hotspot functions

7

Observations
n Cache contention

• The cache contention of hotspot functions in
some servers can lead to 38% of coldstart ratio
fluctuations, degrading both resource efficiency and
performance

High coldstart ratio

Hotspot contention can result in 100x of function performance difference across servers

e.g., 4.7% on server 8 v.s. 0.04% on server 3

8

Observations
n Cache contention

• Distributing workload on multiple servers evenly, the
performance bottleneck on local server can be improved

• However, this may violate the locality and reduces cache
hit ratio, causing 3× more cache resource usage under
the same performance

Simply switching the load dispatching rule is insufficient to achieve high cache efficiency

hotspot contention eliminated

9

n Cache redundancy

• The top-20 hotspot functions contribute nearly 95%
of invocations but take only 20% of memory usage
over the total 385 functions

• It also means that more than 75% of the resources
are consumed by caching functions that are seldom
invoked.

Local cache control can also lead to much cache redundancy in serverless cluster

Observations

• An observation of the low cache efficiency problem from local cache control
• A centralized cache control system (Flame) to efficiently manage the cached

functions via a global view of cluster status

Summarize

10

n Overview:
• Flame adopts a globally “centralized cache control" for managing

caching in a serverless cluster, thus to enable an optimized cache-hit
ratio and resource efficiency

n The 3W questions:
• Which function should be cached? (W1)
• Where the cached functions should be cached? (W2)
• When the cached functions should be released? (W3)

Design of Flame

11

Design of Flame

Global hotspot
function detection

Load-balanced
cache scheduling

Hybrid cache
allocation policy

• Two-layer controller design:
 A global CacheManager

 +
 Mutilple subcontrollers (Cachelets)

An overview of Flame

 (W1)

 (W2)

 (W3)

12

n Global hotspot function detection (W1)

 [ASPLOS’19]

• Exponentially decaying algorithm

T

t
i

t
i tcounterH

1

1][2

• Top-N Hotspot function list

miHmiH iii 1,H },,...,2,1{ 1

：m # of total functions

m

i ii i HH
1

N

1 2
1

：N # of hotspot functions：][tcounteri The th invocation counter of function

：T # of historical durations

t i

duration

The number of total
requests in duration

:counter

Hot-score of a function：

Design of Flame

13

n Load-balanced Cache Scheduling (W2)
• Filter the servers with enough resources (idle resources + nonhotspot resources)

• Calculate the hot-score in each server

• Determine the cache placement (minimum hotspot aggregation)

Design of Flame

14

n Load-balanced Cache Scheduling (W2)
• Filter the servers with enough resources (idle resources + temporary space)

• Calculate the hot-score in each server

• Determine the cache placement (minimum hotspot aggregation)

• Hot-score aggregation of a server

list,)(
1

hotspotinstinstscorehotS j

M

j
j

：jinst The th instance in the server
：M # of instances in the server

j

Design of Flame

15

n Load-balanced Cache Scheduling (W2)

• Filter the servers with enough resources (idle resources + temporary space)

• Calculate the hot-score in each server

• Determine the cache placement (minimum hotspot aggregation)

score=20 score=200 score=100

Scheduled Function

An example of cache scheduling

Design of Flame

16

n Hybrid cache allocation policy (W3)
• Protected/Temporary Memory Partitions

• “First-class caching” for Hotspot function

• “Best-effort caching” for non-hotspot funcitons

Design of Flame

17

n Integration on OpenFaaS
• Approximately 4,000 lines of Golang

• Component modifications such as gateway, faas-netes, alert-Manager

• Adding new components like repository, CacheManager and Cachelet

n Simulator
• Approximately 12,000 lines of Java

• For large scale of evaluation

• Quickly deployed in a local environment

Implementation

18

n Testbed
• 8-server local cluster with Ubuntu 16.04, Docker 18.03

• 128 GB RAM and 16-core Intel Xeon Silver 2.50 GHz CPUs, 10 Gbps network

• A large scale of simulation

n Workload
• 8 different workload set from Azure’s function trace, 385 functions across 7 days

• Diverse workload characterizations

Evaluation

19

n Comparison systems
• TTL-based keepalive policy

• FaasCache [ASPLOS 2021]

• CH-RLU [HPDC 2022]

• Icebreaker [ASPLOS 2022]

n Metrics
• Coldstart ratio, latency (i.e., the duration between request arrivals in getaway and

invocation completion)

• Overall memory usage for caching and executing requests

Evaluation

20

n Overall Performance
• How Flame perfroms than the compared methods under different workloads?

• Flame can reduce the cache resource usage by 26%-54% on average and improve the coldstart
ratio by more than 7× in serverless cluster

Evaluation

21

n Cache resource allocation
• How Flame perfroms than the existing methods under different workloads?

• Flame's hybrid resource allocation strategy mainly focuses on hotspot functions, which consumes
less cache resources and can dynamically adjust it with workload changes

Less resource consumption

Workload spikes

Evaluation

22

n Cache usage breakdown

• Flame can significantly reduce cache usage and redundancy between different functions

25,188 TB·s (FaasCache)

11,803 TB·s (Flame)
v.s.

Evaluation

23

n Function latency distribution
• How Flame perfroms when compared with existing methods?

• Flame can reduce the 99th percentile latency more than 10× by mitigating the coldstart overhead.

Evaluation

24

n Sensitivity & Scalability
• How Flame perfroms when the cluster scales or memory capacity changes？

• Flame can still achieve better performance when changing cluster size or server memory capacity.

Evaluation

25

n System overhead
• How is Flame’s system overhead?

• Flame generates negligible overhead in system resource usage and decision latency, and it can be
easily extended in large scale of workload scenarios

• Reading the metadata of 385
functions takes <5 ms

• Sync. between the Cachelet and
CacheManager takes ~0.5 ms

• CacheManager takes 175 MB of
memory

• Cachelet takes <100 MB of memory

Evaluation

26

• Flame aims to improve the cache efficiency
in serverless computing

• It addresses the hotspot contention and
cache redundancy problems from a
centralized cache control design

• Flame can help to save approximately
4,000,000$ every year in our production
system

Conclusion

ynyang@tju.edu.cn

Paper Access

Contact

Affiliation

College of Intelligence & Computing, Tianjin
University

Tianjin, China

Source File: https://github.com/ykiauz/Flame/tree/main/benchmark

Full Paper: https://dl.acm.org/doi/10.1145/3623278.3624769

27

1
http://cic.tju.edu.cn/faculty/likeqiu/index.html

Thanks for listening!

