

#### Understanding, Predicting and Scheduling Serverless Workloads under *Partial Interference*

Laiping Zhao, <u>Yanan Yang</u>, Yiming Li, Xian Zhou and Keqiu Li

**Tianjin University** 



#### **Serverless Computing**



### **Serverless Workloads**

Scheduled Background (BG)

IoT data collection, monitoring etc.

**Short-term Computing (SC)** 

Mapreduce/Spark, linear algebra etc:

Latency Sensitive (LS)

Search, e-commerce, social network.





 $\leq 90$ 

#### Serverless Workloads



• A server can accommodate hundreds of functions.



Functions are started or released at all

times.

interference

#### Interference



#### Interference causes high tail latency.

# **Cutting Tail Latency**

**Physical isolation** 



Software optimization

VM + Container



Low resource efficiency

**Overprovisioning** 

# **Cutting Tail Latency**



 Only fine-grained and proactive control can provide good performance and high throughput for serverless.

#### **Partial Interference**



 Interference occurs only at some parts, but not all, of the workloads.

#### **Partial Interference in Serverless**



#### **Partial Interference in Serverless**

• LS: Social network (9 functions)



- BG/SC:
  - matrix multiplication,
  - video processing,
  - iperf,
  - dd,
  - LR,
  - Kmeans etc.

#### Serverless makes partial interference particularly severe.

#### High volatility

 Serverless functions are diverse in terms of execution behavior and resource consumption, making partial interference more volatile.

#### **Partial interference scenarios**



- Either as strong as *Full interference*, or as weak as Zero interference.
- The difference in the 99th percentile latency among these scenarios reaches 7×.

#### Spatial variation

 Serverless functions are small in size and stateless, making partial interference spatially varied.

#### **Partial interference scenarios**



• Interference on the critical path (e.g., 1-2-6-8-9) generates a much more severe impact than interference on the non-critical path.

3

#### **Temporal variation**

 Serverless functions are short-lived, making partial interference temporally varied.



• The maximum difference in JCT of colocated Logistic Regression (LR) and Kmeans is more than 2×.

#### 4 Hotspot propagation

 Partial interference triggers a chain reaction across the function call path and leads to diametrically opposite effects.



- The QPS of the subsequent invoked functions decreases.
- The bottlenecked gateway degrades the invocation speeds of all other functions.

#### **5** Restoring propagation

 The local control of partial interference suffers from impact propagation.



(b) Inter. at <a>(c)</a> compose-and-upload

• Local interference control increase the other functions' latencies due to the restored invocations.

#### Predicting

#### 6 Predictability in serverless

 Accurate partial interference prediction is enabled by function-level profiles, thereby improving the QoS of workloads.



#### Function-level profiles

produce an average median that is 2× lower than that by workload-level profiles.

### Predicting



DA "spatial-temporal interference" - aware incremental learning predictor, which can converge quickly by training on the profiles of functions along an end-to-end call path.







Function-level profiling

- solo-run way
- non-intrusive
  - system-layer
  - microarchitecture-layer

In the second second



 $P_{A\cup\{B,C,...\}} = RM(R_A, R_B, R_C, ..., U_A, U_B, U_C, ..., D_A, D_B, D_C, ..., T_A, T_B, T_C, ...)$ 

AllocatedRes Utilization

Lifetime

# of rows = # of servers



- $(D_2, D_3) = (0, t_{delay})$
- U<sub>1</sub>, U<sub>2</sub>.

 $u_{ij}^k$ : the *k*th metric measured when workload *i* is deployed on server *j*.

Learning models

- IKNN, IRFR, IMLP, ILR, ISVR, ESP [Mishra2017], Pythia [Xu2018]
- The prediction error of IPC generated by **IRFR** is as low as **1.71%**.



Figure 9. The prediction errors of (a) IPC and (b) tail latency.

# Scheduling

- A simple binary search scheduling algorithm
  - maximize resource efficiency, by deploying function instances on a min number of active servers, while guaranteeing the QoS of colocated workloads.



- Workloads: [Gsight and data available: https://github.com/tjulym/gray]
  - BG/SC: ServerlessBench [Yu2020], FunctionBench [Kim2019];
  - LS: social network, e-commerce;
  - Azure trace [Shahrad2020]
- Testbed:

| Openfaac | Component           | Specification          | Component               | Specification     |
|----------|---------------------|------------------------|-------------------------|-------------------|
| Openiaas | CPU model           | Intel Xeon E7-4820v4   | Shared LLC Size         | 25MB              |
|          | Number of sockets   | 4                      | Memory Capacity         | 256GB             |
|          | Processor BaseFreq. | 2.00 GHz               | <b>Operating System</b> | Ubuntu 14.04.5LTS |
|          | Threads             | 80 (40 physical cores) | SSD Capacity            | 960GB             |
|          | Private L1&L2 Cache | 64 KB and 256 KB       | Number of Nodes         | 8                 |

#### • Fast and stable convergence:

- Function-level profiles enable Gsight to converge quickly. Its precision is also stable after convergence.
- To achieve the same prediction error, Gsight-IRFR only requires 1/3 samples compared to serverful system.



Function density



Gsight scheduling can improve the function density by an average of 18.79% and by 48.48% over those of *Pythia* and *Worst Fit*.

CPU utilization



Gsight scheduling can improve CPU utilization by **30.02%** and **67.51%** on average compared with that of *Pythia* and *Worst Fit*, respectively.

#### SLA guarantee



 Gsight scheduling can guarantee the SLA of social network 95.39% of the time.

Overhead



#### • Training:

- 3,000 samples takes us less than 2 person-hours, the training process takes only < 10 minutes.</li>
- Gsight predicting takes 3.48 ms.
  - Cold start is slow.
  - A scalable gateway is also required.

#### Conclusion

- From interference to partial interference, we are moving forward to understand more about tail latency.
- Serverless makes the resource management more challengeable.
- Only fine-grained and proactive control can provide good performance and high throughput for serverless.
- Gsight is just a start!

