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Serverless Workloads
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- |oT data collection, monitoring etc. 0.125-3GB

 Memory
- Mapreduce/Spark, linear algebra etc% ~ Short-lived
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- Search, e-commerce, social network. =4




Serverless Workloads

ad High density

« A server can accommodate hundreds of
functions.

Short-lived Ead High dynamic

e Functions are started or released at all
times.

interference




Interference

The average latency The tail latency varia { :b". o bulling responsive

The middle 80% The tail 1%
‘ The Tail
at Scale

[Jeffrey Dean2013]
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- Interference causes high tail latency.



Cutting Tail Latency

» Physical isolation

threads

fill

binding threads to cores

llocate LLC to cores

 Intel RDT

Core-level
CPU isolation

LLC

- Software optimization

« VM + Container
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[Delimitrou and Kozyrakis, 2014]
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« Overprovisioning :



Cutting Tail Latency

Reactive control

Thread Thread Thread |
#1 #2 #3
ALVMAV—LH » CPU Timeline

ReactivéT ¥ Control begins to
control  take effect

- High density » High dynamic

thread

CPU

 Only fine-grained and proactive control can provide
good performance and high throughput for serverless.



Partial Interference

Func. of workload 1: ¢<¢ Func. of workload 2:0 A

Full
Interference O tart-------—--—--—-- T —— =

Zero U <> = EE >

Interference ] . > = ~Time

* Interference occurs only at some parts, but not all, of
the workloads.



Partial Interference in Serverless

» Understanding

fero
Interference redicting

« Scheduling




Partial Interference in Serverless

« LS: Social network (9 functions)

88—
Func. of workload1 :D&%ﬁ%@ Func. of w.2: %% Func. of w.3:<{>-<>
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unction lifetime g7 Server 4 Server 5
Server1 4@Server 3

(1)compose-post @upload-media (@) upload-text (@) upload-urls (5)upload-unique-id
(6)compose-and-upload (7?)post-storage (8)upload-home-timeline (@get-followers

- BG/SC:

* matrix
multiplication,

* video processing,

* iperf,

- dd,

* LR,

- Kmeans etc.

» Serverless makes partial interference particularly severe.
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U n qe rSta n d In g Partial interference scenarios

i (s Matmul dd iperf vid ,
1 High volatility , Lo Mam, dd -, TRt yideopro
& 0.9 M

 Serverless functions are

diverse in terms of execution

behavior and resource

consumption, making partial = 0.4 ﬂ-ldﬂ"--rLLI"-'_L"_”m“LI—Ir_

interference more volatile. 2468 | 2468 12468 | 2468
SocialNetwork Function ID

- Either as strong as Full interference, or as weak as Zero interference.

 The difference in the 99th percentile latency among these scenarios

reaches 7 x. y



Understanding

2 Spatial variation

« Serverless functions are small
In size and stateless, making
partial interference spatially

varied.

Partial interference scenarios

1.0 Matmul  dd iperf video pro.

5 0.4 PTJLH‘HJL.? I'I-r_L"""m"'LI—Lr—

2468 | 2468 | 2468 | 2468
SocialNetwork Function ID

* Interference on the critical path (e.g., 1-2-6-8-9 ) generates a much more

severe impact than interference on the non-critical path.

12



Understanding

B KMeans LR
383 331

[ Delay

3 Temporal variation o7

« Serverless functions are §.G5
e G4

. : : S
short-lived, making partial 3 a3
interference temporally G2
Gl

varied.

0 300 600 900
Timeline (s)
(b) Inter. at (6)compose-and-upload

« The maximum difference in JCT of colocated Logistic Regression (LR) and

Kmeans is more than 2 x.



Understanding q L
——— = =
ES0 ’
= =X Partial-interference
4 HOtSpOt propagatlon E > 0 - After restoration
. it : 1
+ Partial interference triggers a s B I
chain reaction across the g %«0 =—s—=n
=
. 0 L L i
function call path and leads to z 3 % 4 EE 7 & O
diametrically opposite effects. ocilNetwork Fanction 1D

(a) Inter. at (1)compose-post

- The QPS of the subsequent invoked functions decreases.

- The bottlenecked gateway degrades the invocation speeds of all other

functions.
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Understanding

5 Restoring propagation

« The local control of partial

99 %ile

interference suffers from

QPS

Impact propagation.

Normalized Normalized

SocialNetwork Fuinction ID

(b) Inter. at (6)compose-and-upload

» Local interference control increase the other functions’
restored invocations.

latencies due to the
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Predicting

6 Predictability in serverless

 Accurate partial interference prediction is enabled by function-level

profiles, thereby improving the QoS of workloads.

B Workload-level  Function-level profiles

) I Function-level
produce an average median
3 ‘i #A$ l that is 2x lower than that by
$ .

workload-level profiles.

Pred. Error (%)

(a) End to- end ave. IPC (b) 99%11e latency
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Predicting

Predicting

holistic method

& High volatility spatial-temporal
& natial variation :
s . interference aware
2 Partial Temporal variation
- Interference Hotspot propagation
S
e
>

* Restoring propagation

» Predictability Function profiles
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Gsight Predictor

OA “spatial-temporal interference” - aware incremental
learning predictor, which can converge quickly by training on
the profiles of functions along an end-to-end call path.

Function-level Spatial-temporal Incremental

profiles overlap code learning model
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Gsight Predictor

Offline Training

Ye-ee%am

/ Compute Proflles\

“u»

COmPUte Profiles

Online Predictin

22—
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@Momtor Serverless System
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Gsight Predictor

_____ Offline Training . Online Predicting__ £\ tion-level orofiling

(1) Gaj | 6 O
/Compute 9Profiles %iles Gompute e solo-run way
1. 3 . 3
{ /Compute Profiles T y ) |  hon-intrusive
! Solo-run \Z/ @ | / |
earning | ePredlct @Sched'ule . System_|ayer
oo ) Mol @ L | e
"«f:: .:"::: Partial code Incremental “eo-e-0| » microarchitecture-layer
L'\J T /__,/ | update - ﬁ’;‘. ‘V
Compute _ Perf. labels i (9 = J
Co-locating 5 Monitor serveriess System

.................................................................................................

016 metrics: CPU, memory, network, 1/0, branch MPKI, context-switches,
LLC, CPU frequency, L2/L3 MPKI, etc.



Gsight Predictor

Offline Training

O-E
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Gsight Predictor |

# of rows = # of servers

88
Func. of workload1 :D{ZBF%D Func. of w.2: %% Func. of w.3:<{>-<>

tolay —
l '\._J' R—— —} .......... D
AL oy 9
j— () (8)0>0(9)
Function lifetime Server 5

Serveri

Server 3

- Temporal and spatial overlap code

* (D2, D3) = (0, ty.15y)
¢ U1, Uz.

: the kth metric measured when
workload /is deployed on server /.
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Gsight Predictor

OLearning models

mIKNN, IRFR, IMLP, ILR, ISVR, ESP [Mishra2017], Pythia [Xu2018]
BmThe prediction error of IPC generated by IRFR is as low as 1.71%.

60 = IKN IMLPE Pythia 250 |

B ESP BN Pythia

- BTILR B ISVRE ESP 200 | B Gsight-IRFR
°\°45 : T T T - T
o ' N 5 150 |
= ¥ ' 100
= 15 q i, 50

0 ik —

SC+SC/BG SHLS 90%ile 95%ile 99%ile
(@) IPC (b) Tail latency

Figure 9. The prediction errors of (a) IPC and (b) tail latency.

LS+SC/BG




Scheduling

» A simple binary search scheduling algorithm

« maximize resource efficiency, by deploying function instances on a min
number of active servers, while guaranteeing the QoS of colocated

workloads.

active

- Start from the full overlap.

Binary search
exploration

If the latency is not guaranteed
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Experiments

« Workloads:

[Gsight and data available: https.//github.com/tjulym/qgrayi

« BG/SC: ServerlessBench [Yu2020], FunctionBench [Kim2019];
* LS: social network, e-commerce;
« Azure trace [Shahrad2020]

 Testbed:

« Openfaas

Component Specification Component Specification
CPU model Intel Xeon E7-4820v4 | Shared LLC Size 25MB
Number of sockets 4 Memory Capacity 256GB
Processor BaseFreq. 2.00 GHz Operating System [Ubuntu 14.04.5LTS
Threads 80 (40 physical cores)| SSD Capacity 960GB
Private L1&L2 Cache| 64 KB and 256 KB |Number of Nodes 8
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Experiments

- Fast and stable convergence:
 Function-level profiles enable Gsight to converge quickly. Its precision is
also stable after convergence.

 To achieve the same prediction error, Gsight-IRFR only requires 1/3
samples compared to serverful system.

2-APPs @ 50-APPs
APPs H 100-APPs

sz,
n

Error(%)
-
n S

-

h-
--
-----_
——

Number of samples Number ol samples Combmatlon

(a) Serverful (b) Serverless (c) Multi-apps
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Experiments

 Function density

1) »
08 !
=06 I :
8 04 1' : | =—Gsight
024 ] TEythi
0 P2 == Worst Fit

1 2 3 %

Density (inst./core)
(a) Function density

* Gsight scheduling can improve the

function density by an average of
18.79% and by 48.48% over those of
Pythia and Worst Fit.
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Experiments

« CPU utilization

L OGsight scheduling can improve CPU
3 3'2 | utilization by 30.02% and 67.51% on
8 04 average compared with that of Pythia
0.2 and Worst Fit, respectively.
0

0 20 40 60 80 100
CPU Util. (%)
(b) CPU utilization
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Experiments

« SLA guarantee

1 i '0-_-
08 4 267ms
° 3
= 0.6 I £ SLA
a e :
004 [ —{(>sight
0 2 F I;:' EEEN ythia
°0 4+ /  —-=WorstFit

50 150 250 350
Latency (ms)

(a) Social network

* Gsight scheduling can
guarantee the SLA of social
network 95.39% of the time.
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Experiments

» Overhead

100 —&—]Instance starting

» Training:

« 3,000 samples takes us less than 2

—&—Scheduling decision ol
% —=Resource allocation person-hours, the training process
2 1.0 .~ Invocation forwardins_ _ . £ takes only < 10 minutes.
H001 EEEEEES e astesn . Gsight predicting takes 3.48 ms.
1 0 5 100 200 400  Cold start is slow.

# of Function Instances

- A scalable gateway is also required.
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Conclusion

- From interference to partial interference, we are moving
forward to understand more about tail latency.

- Serverless makes the resource management more
challengeable.

- Only fine-grained and proactive control can provide good
performance and high throughput for serverless.

 Gsight is just a start!
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