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Serverless Computing
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Serverless Workloads
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Small-sized

Short-lived

Scheduled Background (BG)

Short-term Computing (SC)

Latency Sensitive (LS)

• IoT data collection, monitoring etc.

• Mapreduce/Spark, linear algebra etc.

• Search, e-commerce, social network.

0.125-3GB 
Memory

≤900 s



Serverless Workloads
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Small-sized

Short-lived

High density

High dynamic

• A server can accommodate hundreds of 
functions. 

• Functions are started or released at all 

times.

interference



Interference
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[Jeffrey Dean2013]

The middle 80% The tail 1%

• Interference causes high tail latency.

The average latency The tail latency



Cutting Tail Latency
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• Physical isolation

binding threads to cores

threads

CPU

LLC

• Intel RDT

• Software optimization

Core-level 

isolation

Low resource 

efficiency

• Overprovisioning

Reserved

Used
    =3~5×

[Delimitrou and Kozyrakis, 2014]

• VM + Container

Allocate LLC to cores



Cutting Tail Latency

• Only fine-grained and proactive control can provide 

good performance and high throughput for serverless.
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Thread 
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CPU Timeline

Reactive 
control

Control begins to 
take effect

threads

CPU

• High density • High dynamic
Monitor Control

Reactive control



Partial Interference
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• Interference occurs only at some parts, but not all, of 

the workloads. 



Partial Interference in Serverless
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Partial 
Interference

• Understanding

• Predicting

• Scheduling



Partial Interference in Serverless

• LS: Social network (9 functions)
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• BG/SC: 
• matrix 

multiplication, 
• video processing, 
• iperf, 
• dd, 
• LR, 
• Kmeans etc.

• Serverless makes partial interference particularly severe. 



Understanding  

11

1
• Serverless functions are 

diverse in terms of execution 

behavior and resource 

consumption, making partial 

interference more volatile. 

High volatility

    diff <

� ×

Partial interference scenarios 

• Either as strong as Full interference, or as weak as Zero interference.

• The difference in the 99th percentile latency among these scenarios 
reaches 7×.



Understanding 

• Interference on the critical path (e.g., 1-2-6-8-9 ) generates a much more 

severe impact than interference on the non-critical path.
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2
• Serverless functions are small 

in size and stateless, making 

partial interference spatially 

varied. 

Spatial variation 

    diff <

� ×

Partial interference scenarios 



Understanding 
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3
• Serverless functions are 

short-lived, making partial 

interference temporally 

varied. 

Temporal variation 

• The maximum difference in JCT of colocated Logistic Regression (LR) and 

Kmeans is more than 2×.



Understanding 

• The QPS of the subsequent invoked functions decreases. 

•  The bottlenecked gateway degrades the invocation speeds of all other 
functions. 
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4
• Partial interference triggers a 

chain reaction across the 

function call path and leads to 

diametrically opposite effects. 

Hotspot propagation 



Understanding 

• Local interference control increase the other functions’ latencies due to the 

restored invocations. 
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5
• The local control of partial 

interference suffers from 

impact propagation. 

Restoring propagation 



Predicting

• Function-level profiles 

produce an average median 

that is 2× lower than that by 

workload-level profiles. 
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6
• Accurate partial interference prediction is enabled by function-level 

profiles, thereby improving the QoS of workloads. 

Predictability  in serverless



Predicting
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Partial 
Interference

• Predictability 

• High volatility 

• Spatial variation 

• Temporal variation 

• Hotspot propagation 

• Restoring propagation 

spatial-temporal 

interference aware 

holistic method 

Predicting

Function profiles



Gsight Predictor

pA“spatial-temporal interference”- aware incremental 

learning predictor, which can converge quickly by training on 

the profiles of functions along an end-to-end call path. 
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Spatial-temporal 

overlap code
Function-level 

profiles
Incremental 

learning model



Gsight Predictor
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Gsight Predictor
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• Function-level profiling

• solo-run way 

• non-intrusive

• system-layer 

• microarchitecture-layer 

p16 metrics: CPU, memory, network, I/O, branch MPKI, context-switches, 

LLC, CPU frequency, L2/L3 MPKI, etc.



Gsight Predictor
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• Incremental learning

• regression model

• temporal overlap coding 

• spatial overlap coding 



Gsight Predictor

• Temporal and spatial overlap code

• (D2, D3) = (0, tdelay)

• U1, U2.
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���
� : the kth metric measured when 

workload i is deployed on server j.

# of rows = # of servers

U1

U2 



Gsight Predictor
pLearning models

nIKNN, IRFR, IMLP, ILR, ISVR, ESP [Mishra2017], Pythia [Xu2018]

nThe prediction error of IPC generated by IRFR is as low as 1.71%.

23



Scheduling

• A simple binary search scheduling algorithm 

• maximize resource efficiency, by deploying function instances on a min 

number of active servers, while guaranteeing the QoS of colocated 

workloads. 

• Start from the full overlap.
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Binary search  
exploration Predicting

If the latency is not guaranteed

active

End



Experiments

• Workloads:

• BG/SC: ServerlessBench [Yu2020], FunctionBench [Kim2019];

• LS: social network, e-commerce;

• Azure trace [Shahrad2020]

• Testbed:

• Openfaas
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[Gsight and data available: https://github.com/tjulym/gray]



Experiments
• Fast and stable convergence: 

• Function-level profiles enable Gsight to converge quickly. Its precision is 
also stable after convergence. 

• To achieve the same prediction error, Gsight-IRFR only requires 1/3 
samples compared to serverful system.
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Experiments

• Gsight scheduling can improve the 

function density by an average of 

18.79% and by 48.48% over those of 

Pythia and Worst Fit.
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• Function density



Experiments

• CPU utilization
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pGsight scheduling can improve CPU 

utilization by 30.02% and 67.51% on 

average compared with that of Pythia 

and Worst Fit, respectively. 



Experiments

• Gsight scheduling  can 

guarantee the SLA of social 

network 95.39% of the time.
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• SLA guarantee



Experiments
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• Overhead
• Training:

• 3,000 samples takes us less than 2 

person-hours, the training process 

takes only < 10 minutes. 

• Gsight predicting takes 3.48 ms.

• Cold start is slow.

• A scalable gateway is also required.



Conclusion

• From interference to partial interference, we are moving 

forward to understand more about tail latency.

• Serverless makes the resource management more 

challengeable.

• Only fine-grained and proactive control can provide good 

performance and high throughput for serverless.

• Gsight is just a start!
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Thank you
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