
Understanding, Predicting and Scheduling
Serverless Workloads under Partial
Interference

Laiping Zhao, Yanan Yang, Yiming Li,
Xian Zhou and Keqiu Li

Tianjin University

Serverless Computing

2

0

20

40

60

80

100

120

A Berkeley View on Serverless
Computing

AWS
lambda

2014 2015 2016 2017 2018 2019 2020

Serverless Workloads

3

Small-sized

Short-lived

Scheduled Background (BG)

Short-term Computing (SC)

Latency Sensitive (LS)

• IoT data collection, monitoring etc.

• Mapreduce/Spark, linear algebra etc.

• Search, e-commerce, social network.

0.125-3GB
Memory

≤900 s

Serverless Workloads

4

Small-sized

Short-lived

High density

High dynamic

• A server can accommodate hundreds of
functions.

• Functions are started or released at all

times.

interference

Interference

5

[Jeffrey Dean2013]

The middle 80% The tail 1%

• Interference causes high tail latency.

The average latency The tail latency

Cutting Tail Latency

6

• Physical isolation

binding threads to cores

threads

CPU

LLC

• Intel RDT

• Software optimization

Core-level

isolation

Low resource

efficiency

• Overprovisioning

Reserved

Used
 =3~5×

[Delimitrou and Kozyrakis, 2014]

• VM + Container

Allocate LLC to cores

Cutting Tail Latency

• Only fine-grained and proactive control can provide

good performance and high throughput for serverless.
7

Thread
#1

Thread
#2

Thread
#3

CPU Timeline

Reactive
control

Control begins to
take effect

threads

CPU

• High density • High dynamic
Monitor Control

Reactive control

Partial Interference

8

• Interference occurs only at some parts, but not all, of

the workloads.

Partial Interference in Serverless

9

Partial
Interference

• Understanding

• Predicting

• Scheduling

Partial Interference in Serverless

• LS: Social network (9 functions)

10

• BG/SC:
• matrix

multiplication,
• video processing,
• iperf,
• dd,
• LR,
• Kmeans etc.

• Serverless makes partial interference particularly severe.

Understanding

11

1
• Serverless functions are

diverse in terms of execution

behavior and resource

consumption, making partial

interference more volatile.

High volatility

 diff <

� ×

Partial interference scenarios

• Either as strong as Full interference, or as weak as Zero interference.

• The difference in the 99th percentile latency among these scenarios
reaches 7×.

Understanding

• Interference on the critical path (e.g., 1-2-6-8-9) generates a much more

severe impact than interference on the non-critical path.
12

2
• Serverless functions are small

in size and stateless, making

partial interference spatially

varied.

Spatial variation

 diff <

� ×

Partial interference scenarios

Understanding

13

3
• Serverless functions are

short-lived, making partial

interference temporally

varied.

Temporal variation

• The maximum difference in JCT of colocated Logistic Regression (LR) and

Kmeans is more than 2×.

Understanding

• The QPS of the subsequent invoked functions decreases.

• The bottlenecked gateway degrades the invocation speeds of all other
functions.

14

4
• Partial interference triggers a

chain reaction across the

function call path and leads to

diametrically opposite effects.

Hotspot propagation

Understanding

• Local interference control increase the other functions’ latencies due to the

restored invocations.

15

5
• The local control of partial

interference suffers from

impact propagation.

Restoring propagation

Predicting

• Function-level profiles

produce an average median

that is 2× lower than that by

workload-level profiles.

16

6
• Accurate partial interference prediction is enabled by function-level

profiles, thereby improving the QoS of workloads.

Predictability in serverless

Predicting

17

Partial
Interference

• Predictability

• High volatility

• Spatial variation

• Temporal variation

• Hotspot propagation

• Restoring propagation

spatial-temporal

interference aware

holistic method

Predicting

Function profiles

Gsight Predictor

pA“spatial-temporal interference”- aware incremental

learning predictor, which can converge quickly by training on

the profiles of functions along an end-to-end call path.

18

Spatial-temporal

overlap code
Function-level

profiles
Incremental

learning model

Gsight Predictor

19

Gsight Predictor

20

• Function-level profiling

• solo-run way

• non-intrusive

• system-layer

• microarchitecture-layer

p16 metrics: CPU, memory, network, I/O, branch MPKI, context-switches,

LLC, CPU frequency, L2/L3 MPKI, etc.

Gsight Predictor

21

• Incremental learning

• regression model

• temporal overlap coding

• spatial overlap coding

Gsight Predictor

• Temporal and spatial overlap code

• (D2, D3) = (0, tdelay)

• U1, U2.

22

���
� : the kth metric measured when

workload i is deployed on server j.

of rows = # of servers

U1

U2

Gsight Predictor
pLearning models

nIKNN, IRFR, IMLP, ILR, ISVR, ESP [Mishra2017], Pythia [Xu2018]

nThe prediction error of IPC generated by IRFR is as low as 1.71%.

23

Scheduling

• A simple binary search scheduling algorithm

• maximize resource efficiency, by deploying function instances on a min

number of active servers, while guaranteeing the QoS of colocated

workloads.

• Start from the full overlap.

24

Binary search
exploration Predicting

If the latency is not guaranteed

active

End

Experiments

• Workloads:

• BG/SC: ServerlessBench [Yu2020], FunctionBench [Kim2019];

• LS: social network, e-commerce;

• Azure trace [Shahrad2020]

• Testbed:

• Openfaas

25

[Gsight and data available: https://github.com/tjulym/gray]

Experiments
• Fast and stable convergence:

• Function-level profiles enable Gsight to converge quickly. Its precision is
also stable after convergence.

• To achieve the same prediction error, Gsight-IRFR only requires 1/3
samples compared to serverful system.

26

Experiments

• Gsight scheduling can improve the

function density by an average of

18.79% and by 48.48% over those of

Pythia and Worst Fit.

27

• Function density

Experiments

• CPU utilization

28

pGsight scheduling can improve CPU

utilization by 30.02% and 67.51% on

average compared with that of Pythia

and Worst Fit, respectively.

Experiments

• Gsight scheduling can

guarantee the SLA of social

network 95.39% of the time.

29

• SLA guarantee

Experiments

30

• Overhead
• Training:

• 3,000 samples takes us less than 2

person-hours, the training process

takes only < 10 minutes.

• Gsight predicting takes 3.48 ms.

• Cold start is slow.

• A scalable gateway is also required.

Conclusion

• From interference to partial interference, we are moving

forward to understand more about tail latency.

• Serverless makes the resource management more

challengeable.

• Only fine-grained and proactive control can provide good

performance and high throughput for serverless.

• Gsight is just a start!

31

Thank you

32

