
天津大学智能与计算学部
Division of Intelligence and Computing

TETRIS: Memory-efficient Serverless Inference 
through Tensor Sharing

Jie Li1, Laiping Zhao1, Yanan Yang1, Kunlin Zhan2, Keqiu Li1

1Tianjin University, 258.com



2

Serverless Inference

Benefits of Serverless Inference:
• Easy to use
• Cost effective
• Fast autoscaling

However, the current serverless inference platforms 
are highly memory inefficient!

Deploy
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Serverless Inference

Inference requests Spawned function instances
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Serverless Inference

Inference requests Spawned function instances

High request load 

Numerous instances 

Huge parameters

Memory inefficiency
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Serverless Inference

Drawback of Serverless Inference:
• Memory Inefficiency

• High memory redundancy

Causes:
• Multiple function instances

• One-to-one mapping policy in AWS Lambda
• Early instance provisions
• Long keep-alive periods

• 15-60 minutes in AWS Lambda

The problem to be solved in this work

Redundant



Existing approaches

Runtime Sharing:
• Processing multiple requests within a single instance

• Batching
• Grouping and processing requests in batch

• Multi-threading
• Processing requests concurrently

The runtime sharing methods reduced memory redundancy 
by decreasing the number of launched instances



Parameterized 
tensors

The parameterized tensors are loaded into memory 
repeatedly across function instances

Our contributions

Key observation:
• Tensor redundancy



Our contributions

Key observation:
• Tensor redundancy

Tensor redundancy exists across 
distinct functions:
• The same model used in 
distinct model pipelines
• Different downstream 
models retrained from the 
same pre-trained parameters



Our contributions

Summarize:
• An observation of the tensor redundancy problem
• An lightweight and user-space solution that eliminates 

the tensor redundancy through tensor sharing



Design of TETRIS

Overview:
• TETRIS improves memory efficiency can be improved 

through a combined optimization of runtime sharing 
and tensor sharing



Design of TETRIS

Overview:



Design of TETRIS

Overview:

1. Enable tensor sharing 
on each server

2. Carefully schedule instances 
across servers to share more 
tensors

3. Scaling fewer 
instances to serve 
requests under 
SLO constrains



Design of TETRIS

How to share tensors of function instances 
on the same server？
• First, make a shared memory region across function 

instances (The Shared Tensor Store)

(implemented by mounting a shared tmpfs to each container）

• Second, take over the model loading process of 
function instances and put tensors into the shared 
region (The Agent)

• Third, make tensors in the shared region to be 
reclaimed correctly (The Reclaimer)



Design of TETRIS

How to share tensors of function instances 
on the same server？
• How does the Agent load tensors?

• Create a new memory region if the 
tensor has never been loaded
• Mmapping existing memory region 
if the tensor has already been loaded  

Tensors are identified by hash values



Design of TETRIS

How to share tensors of function instances 
on the same server？
• How does the Reclaimer detect and reclaim 

unreferenced tensors?

Get the tensor set 
of running instances

Get the tensor set 
in the Tensor Store

Infer the tensor set 
to be reclaimed

𝑻𝒘𝒂𝒓𝒎 𝑻𝒂𝒍𝒍 𝑻𝒄𝒐𝒍𝒅 = 𝑻𝒂𝒍𝒍 / 𝑻𝒘𝒂𝒓𝒎

Run periodically



Design of TETRIS

How to share tensors of function instances 
on the same server？
• How does the Reclaimer detect and reclaim 

unreferenced tensors?
• Unreferenced tensors can be kept alive to 

accelerate function instance startups

The loading of massive model parameters 
dominates the startup process of function 
instances



Design of TETRIS

How to share tensors of function instances 
on the same server？
• The lifecycle of tensors



Design of TETRIS

How to share tensors of function instances 
across different servers？
• TETRIS does NOT support remote sharing
• TETRIS minimizes cluster memory consumption 

through instance scheduling

Greedy by the tensor similarity between instance 𝒊
and server 𝒋: 

Θ𝒊𝒋 =
𝑴𝒆𝒎 𝑻𝒊 ∩ 𝑻𝒔𝒕𝒐𝒓𝒆

𝒋

𝑴𝒆𝒎(𝑻𝒊）



Design of TETRIS

How to share function instance runtimes 
under SLO constraints？
• Profile inference latency under various combinations 

of <CPU, memory, batch size, concurrency>
• Model the instance scaling process as an optimization 

problem

Different combinations of batch size 
and concurrency configurations lead 
to different memory efficiency



Design of TETRIS

How to share function instance runtimes 
under SLO constraints？
• Model the instance scaling process as an optimization 

problem

Subject to minimize the memory consumption

The SLO constrains

Ensure that the residual RPS can be fully 
processed by the newly spawned instances.



Design of TETRIS

How to share function instance runtimes 
under SLO constraints？
• Model the instance scaling process as an optimization 

problem

However, this problem 
is NP-Complete

A simple greedy solution:
• Greedily select configuration 𝑖

with maximum 
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖

𝑚𝑒𝑚𝑜𝑟𝑦𝑖
or 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖

𝑚𝑒𝑚𝑜𝑟𝑦𝑖+𝛼𝐶𝑃𝑈𝑖

(To balance the CPU consumption)



Evaluation

Inference models 
• 21 inference models collected from TF-Hub and 

58.com
Model sizes 
• 11MB to 3.5GB
Download times
• 310 to 1.1M
Application domains
• Text, image, audio, etc
Testbed
• 8-server cluster 

• (80-vCPUs 256GB-mem) x 2, (32-vCPUs 128GB-mem) x 6



Evaluation

With tensor sharing, the memory consumption can be saved by up to 93%

Memory reduction under different number of function instances



Evaluation

With tensor sharing, the function density can be improved by up to 30x

Function density improvement under various machine memory capacities



Evaluation

With tensor sharing, the function startup can be accelerated by up to 91.56%

Startup time w/wo tensor sharing



Evaluation

The tensor sharing method does NOT introduce latency overhead

Inference time w/wo tensor sharing



Evaluation

More experimental settings
• 4 real-world applications
• 3 real-world workload traces (from Azure)
• Comparison systems:

System Runtime Sharing Tensor Sharing

Tetris Combined yes

Tetris-RO Combined no

INFless Batching no

Photons (modified) Multi-threading no



Evaluation

Overall, TETRIS can reduce the mean memory footprint by more than 86%

Normalized memory consumption by four applications under stable, 
period and bursty workloads



Conclusion

Benefits of TETRIS:

• Memory efficient

• No-harming performance

• Low overhead
• Easy to implement
• User transparent
• No modification to ML models



30

Thank You！

Q & A


